小波变换



完美通俗解读


”变换“。很多处理,不管是压缩也好,滤波也好,图形处理也好,本质都是变
basis。如果你暂时有些遗忘了basis的定
basis是指空间里一系列线性独立的向量,而这个空
basis在变换里面


的线性组合表示出来,要这样表示的原因,是因为傅立叶变换的本质,是。小波
basis有关了。再比如你用Photoshop去处理图像,里面的图
basis的改变有关。
basis的选取非常重要,
basis的特点决定了具体的计算过程。一个空间中可能有很多种形式的basis,什
basis比较好,很大程度上取决于这个basis服务于什么应用。比如如果我们希
basis能用其中很少的向量来最大程度地表


basis就是eigenvectorbasis了,因为此时变换矩
T对它们的作用等同于对角矩阵(Tv_n=av_n,a是eigenvalue)。总的来说,抛开
basis,我们都希望它们有一个共同的特点,那就是,容易计








JosephFourier这个人提出的,他发现,这个basis不仅仅存
vectorspace,还存在于functionspace。这个functionspace本质上还是一个
vectorspace,可以是有限的,可以是无限的,只不过在这个空间里,vector就
function了,而对应的标量就是实数或者复数。在vectorspace里,你有vectorv
vectorbasis的线性组合,那在functionspace里,functionf(x)也可以写成
functionbasis的线性组合,也有norm。你的vectorbasis可以是正交的,我的
basis也可以是正交的(比如sin(t)和sin(2t))。唯一不同的是,我的
basis是无穷尽的,因为我的functionspace的维度是无穷的。好,具体来
f(x)。我们希望将它写成一些cos函数和一些sin函


,这是一个无限循环的函数。其中的1,cosx,sinx,cos2x…..这些,就是傅
functionbasis
functionbasis正交如此重要呢?我们说两个
正交,那就是他俩的内积为0。那对于functionbasis呢?functionbasis怎么求


vector正交的定义。我们说两个vectorv,w如果正交的话,应符


function正交呢?假设我们有两个函数f(x)和g(x),那是什么?我们遵循
的思路去想,两个vector求内积,就是把他们相同位置上对应的点的乘积做一
x点,对应的f和g做乘积,再累加。不过问题是,
和g都是无限函数阿,x又是一个连续的值。怎么办呢?向量是离散的,所以累加,
…….积分!




basis如此重要呢?这就牵涉到系数的求解了。我们研究了函
f,研究了级数,一堆三角函数和常数1,那系数呢?a0,a1,a2这些系数该怎么确
a1了。我现在知道什么?信号f(x)是已知的,傅立叶级
a1呢?很简单,把方程两端的所有部分都求和cosx的内


a1项全部消失了,因为他们和


0!所有就简化为
a1就求解出来了。到这里,你就看出正交的奇妙性了吧:)


functionbasis是专门挑选的,是
coefficients的。但千万别误解为展开变换所用的basis都是正交
basis就只是简单的非正交多项








”小“,是针对傅立叶
















cover了,在下一


basis来表示信号方程。每
motherwavelet,我们称之为母小波,同时还有一个
function,中文是尺度函数,也被成为父小波。任何小波变换的basis函数,其




2的级数,平移的大小和当前其缩放的程度有
basis函数既有高频又有低频,同时还覆盖了时域。对于






就是小波级数,这些级数的组合就形成了小波变换中的基basis。和
orthonormalbasis,也就是说,它们不


小波变换对不管是一维还是高维的大部分信号都能cover很好。这个和傅立叶




围绕小波级数的展开能够在时域和频域上同时定位信号,也就是说,信号的大
a_{j,k},决定。这个特性是得益于小波变换
,而小波级

从信号算出展开系数a需要很方便。普遍情况下,小波变换的复杂度是
,和FFT相当。有不少很快的变换甚至可以达到O(N),也就是说,计算复


match。
















:)




0,其他所有级数系数都是0。我们再看这个信号:




0了!为什




Gibbs现
Exactly。用比较八股的说法来解释,Gibbs现象是由于展开式在间断点邻域不
N趋于无穷大时,这一现象也依然存在。其实通俗一点
sharp的时候,三角波fit不过来了,就凑合出Gibbs了:)接下来


basis不和这个信号变化重叠,它所对应的级数系数都为0!
3个级数系数不为
。你可以使用更复杂的小波,不管什么小波,大部分级数系数都会是0。原因?由于
basis的特殊性,任何小波和常量函数的内积都趋近于0。换句话说,选小波的时
0。正是这个有趣的性质,让小波变












basisfunction就是正弦波,
scale,它都是正弦波,即使你举出余弦波,它还是移相后的正弦波。总之






basisfunction集合对其进行分析。这种灵活性是任何别的变换都无法比拟的。总
;而小波变换则适用




motion信号处理(二)
motherwavelet,我们称之为母小
fatherwavelet,就是scalingfunction。而该小波的basis函数其实
2的级数,平移的大小






就是小波级数,这些级数的组合就形成了小波变换中的基basis。和
orthonormalbasis,也就是说,它们不












basis的形成,是基于基本的小波函数,也就是母小波来做缩放和平移的。但


scalingfunction,人们通常都称其为父小波。它和母小波一样,也是














multiresolutionanalysis,MRA)。说


function是拿来干嘛的?它背后的物理意义是什么?waveletfunction背后的物






8,是离散的一维信号。我们要考虑的,就是如何用小波将其展开。




ψ(2n):
1了,不符合小波基orthonormal的要求,


function:
scale,得到4n,8n,…….下的
function。当然在这个例子里,我们信号长度就是8,所以做到4n就够了。但推
scaling对母小波的作用为,这是归一化后的表示形式。
scale之后的
function进行平移。比如对上一幅图中的basisfunction进行平移,就成了
basisfunction和母小波以及仅仅scale过的小波,都是正交
basis的特点。如果我们用ψ(n)来表示这个motherwavelet,那么这些
basis函数可以写成:
k是可以看成时域的参数,因为它控制着小波基时域的转移,而j是频域的


scalingfunction的平移变换是一模一样的。
space的哈尔小波basis组合:
1






waveletfunction阿。没错,它是之前提到的scalingfunction,也就
scalingfunction出来呢?明明


function,这些小波函数本身也组成了正交归一基,但如果仅限于此的话,小
scalingfunction,才能引入我们提到的多


basis组合是怎么通过多解析度推导出来的


Lebesgue空间,对于信号处理非常重要,可
L^p(R)表示,指的是由p次可积函数所组成的函数空间。我们在小波变换中要研
L^2(R)空间的,这个空间是R上的所有处处平方可积的可测函数的


L^2(R)中的信号的。这玩意的特性要具体


wiki。总之你记住,小波变换


L^2(R)空间做MRA是在干嘛呢?就是说,在L^2(R)空间中,我们可以找出一
,并有下列性质:








有这样一个方程,是的orthonormalbasis。
V_j都是L^2(R)空间中的子空间,然后他们是
{0},因为这是最小的子空间,并集就是L空间。是不是有点难以


V0,之后分别是V1,V2,V3,V4。那他
f(t)他属于一个某空间,那你将其在时域上平移,






basis,这是必然的,那对于V0来讲,它的orthonormalbasis就是
的时域变换,而且我们刚才也说了,时域上平
basis所定义的L^2(R)
V0被这些basis所span,表示成:
从负无穷到正无穷。上面的bar表示这是一个闭包空间,也就是说
V0这个子空间。刚才说了,这个子空间的基都是对
为scalingfunction,所以换个说法,就是说这
V0,由scalingfunction和其时域变换的兄弟们span。
scalingfunction只是用来代表一个子空间的,那它的地位也就不





V0的更上一层
scalingfunction做频域的scale后再做时域上的




V_j空间的函数f(t),都可以表示为:
scalingfunction的作用
scaling的构建这些不同的子空间的基础,当j越大的时候,每一次你对频率变换
scalingfunction所做的时域上的整数平移幅度会越小,这样在这个j子空间里面
f(t)表示粒度会很细,细节展现很多。反之亦然。通俗点说,就是对
function的变换平移给你不同的子空间,而不同的子空间给你不同的分辨率,


MRAequation了,这是更加有趣,也是更加核心的地
V0属于V1,那scalingfunction是在V0中的,自然也在
中了。我们把他写成V1的基的线性组合,那就是
h(n)是scalingfunction的系数,也叫做scalingfilter或者scalingvector,
2是为了维持norm为1的。看,在这个公式里,
V0的函数用V1的基表示出来了。同理,我们可以循环如此,把属于
的在V2,V3,…,Vn中表示出来。这些方程就是MRAequation,也叫
equation,它是scalingfunction理论的基础,也是小波分析的基础之一。
scalingfunction的基本理论知识,知
basis集合就是
function
scalingfunction,如下图所示:
basis集合的展览。通过前面的讨论,我们还知道,一开始
scalingfunction可以通过更精细的子空间的scalingfunction(它们都是对应子空间
basis)来构建。比如
finer的scale:
2
scale和translate过的scalingfunction,都可以用
scale层面上的scalingfunction构建出来。
scale下的scalingfunction了,该看看它们分别所对应的嵌套
了。先看看V0,自然就是以基本的scalingfunction为基础去span




scalingfunction在整个信号长度上,没有任何变化。继续往下看:
V0更加finer的子空间,代表着这样一种信号,它从1-4是常量,从5-8


代表的信号,是分别在1,2;3,4;5,6;7,8上有相同值的信号。那么V3
V3来讲,任何一个时间刻度上的值都可以不一样。而
scalingfunctions的波形验证了之前提到的多解










,完全不损失细节。这就是多解析度的意义。我们可以有嵌套的,由
function演变的basisfunction集合,每一个集合都提供对原始信号的某种近


scalingfunction以及多解析度分析已经比较理解了。但是,


scalingfunction到小波basis组合中干嘛。也就是说,我们希望理解
function是怎么和小波函数结合的呢,多解析度能给小波变换带来什么样的好




V0,basis是scalingfunction:


V1的basis集合是这俩哥们:
V0中的
function和waveletfunction的组合,其实就是V1中的basis!继续这样推
V1本来的的basis是:
V1中对应的waveletfunction是
V2的basis(参考图2)。你继续推导下去,会得到
scalej的waveletfunction,可以被用来将Vj的basis扩展到V(j+1)
Vj,我们现
orthonormalbasis:
一种就是它本来的basis,对任意k。


basis,对任意k,以及上一级子空间的
function,对任意k。


scalingfunction以及waveletfunction的组合来作为当前子空间的基。换句话
V3这个子空间,它实际上就有四种不同的,但是等价的
basis:
本级(V3)的scalingfunctionbasisset
上一级(V2)的scalingfunction+waveletfunction;
.上上一级(V1)的scalingfunction+上上一级(V1)的waveletfunction+上一级
的waveletfunction;
上上上一级(V0)的scalingfunction+上上上一级(V0)的waveletfunction+上上
(V1)的waveletfunction+上一级(V2)的waveletfunction
“针
space的哈尔小波basis组合”,参见图1。现在我们知道了,这个
function不是凭空插进去的,而是通过不断的嵌套迭代出来的:


scalej0,我们都可以给我们的signalspace找到一组
basis,这个basis是通过组合scalej0上的scalingfunction以及所有在
j,j>=j0上的wavelets得到的。这样,基于这个orthonormalbasis,所有信号空
basis的functions的线性组合:






选取合适的waveletfunction和scalingfunction,从已有的信号中,反算出系
c和d。
对系数做对应处理
从处理后的系数中重新构建信号。










basis呢?计算方便是一方面,还有一个原因是,如果他们满足这个性










子空间的第二种可选择的orthonormalbasis作为例子:
basis组成元素,也就是scalingfunctions,的系数,表征的是信号的
平均(想想它们和信号的内积形式),而右边的这四个basis组成元素,也就是
functions,的系数则表征了在local平均中丢失的信号细节。得益于此,多解




function和scalingfunction背后的物理意义了:waveletfunction等同于对信
scalingfunction等同于对信号做低通滤波保留平滑的







scalingfunction,选取合适的系数集
,并由此构建自己的waveletfunctions。所以,如果有深入下去研究的同学,好好

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值