结构计算之多目视觉(三)

本文详细介绍了多目视觉中3D点位置的计算方法,包括线性三角测量原理(DLT)和非线性优化。DLT方法通过线性方程组求解最小二乘问题,非线性优化则利用极大似然估计来处理图像噪声导致的误差,以提高估计精度。此外,还讨论了泰勒展开、加权Newton迭代和光束平差法等非线性优化技术。
摘要由CSDN通过智能技术生成

本文介绍当3D点在N幅视图上的像\left\{ x_i \right\}和这些视图的摄像机矩阵\left\{P_0=K_0[I|0] ,P_j=K_j[R_j|t_j]\right\},其中t_j=-R_jc_j给定时,计算该3D空间点的位置X_i

PS:本文以参考相机坐标系为世界坐标系,有M台摄像机。

目录

1. 线性方法(三角测量原理DLT)

2. 非线性优化(假设初值给定)

3. 正交投影方法


1. 代数方法(线性三角测量原理DLT)

线性三角法类似单目视觉中的DLT方法,在每幅图像上分别有测量x=PX,x^{'}=P^{'}X,且这些方程可以组合成AX=0的形式,它是关于X的线性方程。

像素坐标系-->(图像坐标系-->相机坐标系)-->世界坐标系的转换如下:

(1)齐次方法(DLT):令X=(X,Y,Z,W)^T,4个未知量的2*N个方程,构成最小二乘问题,取对应于A的最小奇异值的单位奇异矢量作为解。(后续讨论归一化以及每幅图像选取两个或三个方程的讨论)

根据上式可得:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值