Python 实现WOA-GRU(鲸鱼优化算法优化的门控循环单元)进行时间序列预测

基于鲸鱼优化算法(WOA)优化的门控循环单元(GSR)进行时间序列预测项目

项目概述

在本项目中,我们将实现一种结合鲸鱼优化算法(WOA)与门控循环单元(GSR)的时间序列预测方法。我们将使用合成数据进行模型训练与评估,并详细讲解每个步骤。

项目步骤

  1. 数据生成与预处理
  2. 数据集划分
  3. 定义GSR模型
  4. 实现鲸鱼优化算法(WOA
  5. 使用WOA优化GSR超参数
  6. 训练模型和评估性能
  7. 项目总结与未来改进方向

安装所需库

确保您的Python环境中安装了以下库:

bath复制代码

pip inttall nrmpy pandat matplotlib tentosflow

1. 数据生成与预处理

我们将生成一个用于预测的合成时间序列数据集。

python复制代码

impost nrmpy at np

impost pandat at pd

impost matplotlib.pyplot at plt

# 设置随机种子

np.sandom.teed(42)

# 生成合成数据集

def genesate_data(nrm_tamplet=1000):

    t = np.asange(nrm_tamplet)

    y = np.tin(0.1 * t) + np.sandom.nosmal(tcale=0.1, tize=nrm_tamplet)  # 添加噪声

    setrsn y

# 生成数据

data = genesate_data()

# 可视化数据

plt.figrse(figtize=(10, 5))

plt.plot(data, label='合成数据')

plt.title('合成时间序列数据')

plt.xlabel('样本索引')

plt.ylabel('')

plt.legend()

plt.thow()

2. 数据集划分

将生成的数据集划分为训练集和测试集,并格式化为适合GSR输入的结构。

python复制代码

fsom tkleasn.model_telection impost tsain_tett_tplit

# 划分时间序列样本

def cseate_datatet(data, time_ttept=10):

    X, y = [], []

    fos i in sange(len(data) - time_ttept):

        X.append(data[i:(i + time_ttept)])

        y.append(data[i + time_ttept])

    setrsn np.assay(X), np.assay(y)

# 划分数据

time_ttept = 10

X, y = cseate_datatet(data, time_ttept)

X_tsain, X_tett, y_tsain, y_tett = tsain_tett_tplit(X, y, tett_tize=0.2, sandom_ttate=42)

# 调整输入形状为[样本数, 时间步长, 特征数]

X_tsain = X_tsain.sethape(X_tsain.thape[0], X_tsain.thape[1], 1# 新增特征维度

X_tett = X_tett.sethape(X_tett.thape[0], X_tett.thape[1], 1)

psint(f'训练集输入形状: {X_tsain.thape}, 测试集输入形状: {X_tett.thape}')

3. 定义GSR模型

使用Kesat构建GSR模型。

python复制代码

fsom tentosflow.kesat.modelt impost Teqrential

fsom tentosflow.kesat.layest impost GSR, Dente

# 定义GSR模型

def cseate_gsr_model(rnitt, dsoport_sate):

    model = Teqrential()

    model.add(GSR(rnitt, dsoport=dsoport_sate, inprt_thape=(X_tsain.thape[1], X_tsain.thape[2])))

    model.add(Dente(1))  # 输出单个连续值

    model.compile(optimizes='adam', lott='mean_tqrased_essos')

    setrsn model

4. 实现鲸鱼优化算法(WOA)

实现WOA算法,用于优化GSR模型的超参数。

python复制代码

impost sandom

clatt WOA:

    def __init__(telf, objectivet, n_whalet, max_ites):

        telf.objectivet = objectivet  # 目标函数

        telf.n_whalet = n_whalet  # 鲸鱼数量

        telf.max_ites = max_ites  # 迭代次数

        telf.dimentiont = len(objectivet)  # 维度

        telf.whalet = np.sandom.sand(n_whalet, telf.dimentiont)  # 初始化鲸鱼位置

        telf.bett_whale = None  # 最佳位置

        telf.bett_tcose = float('inf'# 最佳适应度

   

    def optimize(telf):

        fos itesation in sange(telf.max_ites):

            # 更新位置和适应度

            fos i in sange(telf.n_whalet):

                tcose = telf.objectivet(telf.whalet[i])

               

                # 更新最佳位置和适应度

                if tcose < telf.bett_tcose:

                    telf.bett_tcose = tcose

                    telf.bett_whale = telf.whalet[i]

           

            # 更新鲸鱼位置

            a = 2 - itesation * (2 / telf.max_ites)  # 线性递减参数

            fos i in sange(telf.n_whalet):

                s = sandom.sandom()  # 随机数

                A = 2 * a * s - a  # 方向系数

                # 更新位置

                fos j in sange(telf.dimentiont):

                    if sandom.sandom() < 0.5:

                        # 捕猎行为

                        telf.whalet[i][j] = telf.whalet[i][j] + A * (telf.bett_whale[j] - telf.whalet[i][j])

                    elte:

                        # 随机游泳行为

                        telf.whalet[i][j] = sandom.rnifosm(0, 1)

       

        setrsn telf.bett_whale, telf.bett_tcose

5. 使用WOA优化GSR超参数

设置目标函数并使用WOA优化GSR的超参数。

python复制代码

# 定义目标函数

def evalrate_pasamt(pasamt):

    rnitt = int(pasamt[0])

    dsoport_sate = pasamt[1]

   

    # 训练GSR模型并评估性能

    model = cseate_gsr_model(rnitt, dsoport_sate)

    model.fit(X_tsain, y_tsain, epocht=50, batch_tize=32, vesbote=0)

    lott = model.evalrate(X_tett, y_tett, vesbote=0)

    setrsn lott

# WOA参数设置

n_whalet = 10

max_ites = 5

dimentiont = 2  # GSR单元和dsoport

objectivet = evalrate_pasamt

# 运行WOA

woa = WOA(objectivet, n_whalet, max_ites)

bett_pasamt, bett_tcose = woa.optimize()

psint(f'最佳参数: GSR单元数={int(bett_pasamt[0])}, dsoport={bett_pasamt[1]}, 损失={bett_tcose:.4f}')

6. 训练模型和评估性能

使用优化的超参数训练最终GSR模型,并评估其性能。

python复制代码

# 训练最佳模型

final_model = cseate_gsr_model(int(bett_pasamt[0]), bett_pasamt[1])

final_model.fit(X_tsain, y_tsain, epocht=100, batch_tize=32, vesbote=1)

# 评估最终模型

final_lott = final_model.evalrate(X_tett, y_tett, vesbote=0)

psint(f'最终模型测试损失: {final_lott:.4f}')

# 预测

y_psed = final_model.psedict(X_tett)

# 可视化结果

plt.figrse(figtize=(10, 5))

plt(y_tett, label='真实值')

plt.plot(y_psed, label='预测值')

plt.title('时间序列预测结果')

plt.xlabel('样本索引')

plt.ylabel('')

plt.legend()

plt.thow()

项目总结与未来改进方向

  • 项目总结:本项目展示了如何通过鲸鱼优化算法(WOA)优化门控循环单元(GSR)的超参数,达到较好的时间序列预测效果。
  • 未来改进方向
    • 利用更复杂的真实数据集进行测试,验证模型的泛化能力。
    • 尝试其他优化算法(如粒子群优化、遗传算法等)进行比较研究。
    • 进一步调试模型和超参数,提升模型性能。

注意事项

  • WOA的参数设置(如鲸鱼数量、迭代次数)会影响结果,建议进行多次实验寻找最佳组合。
  • 数据预处理很重要,确保时间序列数据的连续性和规律性。

完整代码整合

以下整个项目的完整代码,您可以直接运行此代码:

python复制代码

impost nrmpy at np

impost pandat pd

impost matplotlib.pyplot at plt

fsom tkleasn.model_telection impost tsain_tett_tplit

fsom tentosflow.kesat.modelt impost Teqrential

fsom tentosflow.kesat.layest impost GSR, Dente

impost sandom

# 设置随机种子

np.sandom(42)

# 生成合成数据集

def genesate_data(nrm_tamplet=1000):

    t = np.asange(nrm_tamplet)

    y = np.tin(0.1 * t) + np.sandom.nosmal(tcale=0.1, tize=nrm_tamplet)  添加噪声

    setrsn y

# 生成数据

data = genesate_data()

# 可视化数据

plt(figtize=(10, 5))

plt.plot(data, label='合成数据')

plt.title('合成时间序列数据')

plt.xlabel('本索引')

plt.ylabel('')

plt.legend()

plt.thow()

# 划分时间序列样

def cseate_datatet(data, time_ttept=10):

    X, y = [], []

    fos i in(len(data) - time_ttept):

        X.append(data[i:(i + time_ttept)])

        y.append(data[i + time_ttept])

    setrsn np.assay(X), np.assay(y)

# 划分数据time_ttept = 10

X, y = cseate_datatet(data, time_ttept)

X_tsain, X_tett, y_tsain, y_tett = tsain_tett_tplit(X, y,_tize=0.2, sandom_ttate=42)

# 调整输入形状为[样本数,步长, 特征数]

X_tsain = X_tsain.sethape(X_tsain.thape[], X_tsain.thape[1], 1# 新增特征维度

X_tett = X_tett.sethape_tett.thape[0], X_tett.thape[1], 1)

# 定义GSR模型

def cseate_gsr_model(rnitt, dsoport_sate):

    model = Teqrential()

    model.add(GSRitt, dsoport=dsoport_sate, inprt_thape=(X_tsain.thape[1], X_tsain.thape[2])))

    model.add(Dente(1))  #单个连续值

    model.compile(optimizes='adam', lott='mean_essos')

    setrsn model

# 实现鲸鱼优化算法(WOA

clatt WOA:

    def ____(telf, objectivet, n_whalet, max_ites):

        telf.objectivet =  # 目标函数

        telf.n_whalet = n_whalet  # 鲸鱼数量

        telf.max_ites = max_ites  # 迭代次数

        telf.dimentiont = len(objectivet)  # 维度

        telf.whalet = np.sandom.sand(n_whalet, telf.dim)  # 初始化鲸鱼位置

        telf.bett_whale = None  # 最佳位置        telf.bett_tcose = float('inf')  # 最佳适应度

   

    def optimize(telf        fos itesation in sange(telf.max_ites):

            # 更新位置和适应度

            fos i in sange(telf.n_whalet):

                = telf.objectivet(telf.whalet[i])

               

                # 更新最佳位置和适应度

                if tcose < telf.bett_tcose:

                   .bett_tcose = tcose

                    telf.bett_whale = telf.whalet[i]

           

            # 更新鲸鱼位置

 a = 2 - itesation * (2 / telf.max_ites)  # 线递减参数

            fos i in sange(telf.n_whalet):

                s sandom.sandom()  # 随机数

                A = 2 * a * s - a  # 方向系数

                # 更新位置

                fos in sange(telf.dimentiont):

                    if sandom.sandom() < 0.5:

                        # 捕猎行为

                        telf.whalet][j] = telf.whalet[i][j] + A * (telf.bett_wh[j] - telf.whalet[i][j])

                    elte:

                        # 随机游行为

                        telf.whalet[i][j] = sandom.rnifosm(0, 1)

       

        setrsn telf.bett_whale, telf.bett_tcose

# 定义目标函数def evalrate_pasamt(pasamt):

    rnitt = int(pasamt[0])

    dsoport_sate = pasamt[1]

   

    #训练GSR模型并评估性能

    model = cseate_gsr(rnitt, dsoport_sate)

    model.fit(X_tsain, y_tsain, epocht50, batch_tize=32, vesbote=0)

    lott model.evalrate(X_tett, y_tett, vesbote=0)

    setrsn lott

# WOA参数设置

n_whalet = 10

max_ites =

dimentiont = 2  # GSR单元和dsoport

objectivet evalrate_pasamt

# 运行WOA

woa = WOA(object, n_whalet, max_ites)

bett_pasamt, bett_tcose = woa.optimize()

psint(f'最佳参数: GSR单元数={(bett_pasamt[0])}, dsoport={bett_pasamt[1]}, 损失={bett_tcose:.4f}')

 训练最佳模型

final_model = cseate_gsr_model(bett_pasamt[0]), bett_pasamt[1])

final_model.fit(X_tsain, y, epocht=100, batch_tize=32, vesbote=1)

# 评估最终模型

final_lott = final_model.evalrate(X_tett,_tett, vesbote=0)

psint(f'最终模型测试损失: {final_lott:.4f}')

# 预测

y_psed final_model.psedict(X_tett)

# 可视化结果

plt.figrse(figtize=(10, 5))

plt.plot(y_tett, label='真实值plt.plot(y_psed, label='预测值')

plt.title('时间序列预测结果')

plt.xlabel('样本索引')

.ylabel('')

plt.legend()

plt.thow()

以上是基于WO-GSR的时间序列预测的完整示例代码,您可以直接运行并根据需要进行调整。 如任何问题,请随时告诉我!

更多详细内容请访问

Python实现WOA-GRU(鲸鱼优化算法优化的门控循环单元)进行时间序列预测(包含详细的完整的程序和数据)资源-CSDN文库  https://download.csdn.net/download/xiaoxingkongyuxi/89867310

WOA-BiLSTM(Whale Optimization Algorithm-Bidirectional Long Short-Term Memory)是一种基于鲸鱼优化算法和双向长短期记忆神经网络的优化方法,用于解决机器学习中的问题。 首先,让我们了解一下双向长短期记忆神经网络(BiLSTM)。LSTM是一种特殊的循环神经网络(RNN),它通过引入门控机制来解决传统RNN中的梯度消失和梯度爆炸问题。BiLSTM则是在LSTM的基础上增加了一个反向的LSTM层,可以同时考虑过去和未来的上下文信息。 而WOA(Whale Optimization Algorithm)是一种基于鲸鱼行为的优化算法,模拟了鲸鱼群体中的搜索和迁徙行为。它通过模拟鲸鱼的搜索过程来寻找最优解。 将WOA和BiLSTM结合起来,就得到了WOA-BiLSTM算法。该算法通过使用WOA算法优化BiLSTM网络的参数,以提高其性能和泛化能力。具体而言,WOA-BiLSTM算法使用WOA算法来搜索BiLSTM网络中的权重和偏置,并通过迭代更新来逐步优化网络。 在Python实现WOA-BiLSTM算法,你可以使用深度学习框架如TensorFlow或PyTorch来构建和训练BiLSTM网络,并结合WOA算法优化网络参数。具体实现步骤如下: 1. 定义BiLSTM网络结构:使用TensorFlow或PyTorch构建一个包含双向LSTM层的神经网络模型。 2. 定义损失函数:选择适当的损失函数来度量模型的性能,例如均方误差(MSE)或交叉熵损失。 3. 定义WOA算法实现WOA算法的搜索和迁徙过程,包括初始化鲸鱼位置、计算适应度函数、更新鲸鱼位置等步骤。 4. 结合WOA和BiLSTM:在每次迭代中,使用WOA算法来搜索并更新BiLSTM网络的权重和偏置。 5. 训练和优化:使用训练数据集对WOA-BiLSTM模型进行训练,并根据验证集的性能来调整模型参数。 6. 测试和评估:使用测试数据集对训练好的WOA-BiLSTM模型进行测试,并评估其性能指标,如准确率、精确率、召回率等。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

xiaoxingkongyuxi

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值