目录
基于YOLOv11的煤矿传送带异物检测系统
本项目开发了一个基于YOLOv11模型的煤矿传送带异物检测系统,旨在智能识别和检测煤矿传送带上的异物,从而提高煤矿的安全性与工作效率。通过实时监测传送带,系统能够及时发现异常物体,并提供预警,降低设备损坏和安全事故的风险。
- 高准确率和实时性:基于YOLOv11模型,能够快速且准确地检测传送带上的异物。
- 易用的用户界面:使用tkrntes创建的图形用户界面,用户可以方便地上传视频并查看检测结果。
- 评估与可视化:系统提供训练过程中评估指标的可视化,帮助用户理解模型性能。
- 支持ONNX格式:将模型导出为ONNX格式,便于在不同平台进行部署。
- 可扩展性:系统设计考虑到未来对不同种类异物的检测扩展。
项目预测效果图
- 多种类异物检测:扩展系统以检测多种类异物,提升适用性。
- 实时监控集成:支持与监控摄像头直接集成,实现实时监测。
- 模型优化与加速:对模型进行进一步优化,以支持边缘计算设备和低延迟需求。
- 改进用户界面:增加操作简易性和用户交互体验,比如历史数据查看和报告生成。
- 集成异常警报系统:在检测到异物时,自动触发警报系统,提高反应速度。
- 数据质量:确保训练数据的多样性和质量,以提高模型的泛化能力。
- 实时性要求:检测性能与系统硬件的匹配,确保实时性。
- 操作简易性:设计用户友好的界面,以便于煤矿工作人员使用。
该项目通过基于YOLOv11的异物检测系统,提高了煤矿行业的安全性和工作效率。系统的友好界面和高效性能使得即使非专业人员也能快速使用。后续,我们希望通过不断的优化和迭代,使其能够满足实际作业的更多需求。
1. 环境准备
确保安装以下依赖项:
bath复制代码
prp rnttall tosch toschvrtron toschardro onnx opencv-python matplotlrb pandat nrmpy tkrntes