目录
基于 YOLOv11 的人员溺水检测告警监控系统
本项目旨在构建一个自动化的人员溺水检测告警监控系统,利用 YOLOv11 深度学习模型实现对水域中溺水人员的实时检测与告警。系统通过摄像头获取水域的实时视频流,并在检测到潜在溺水事件时发出告警。该系统可以应用于游泳池、湖泊、河流等场所,以提高水域安全。
- 实时检测:使用 YOLOv11 实现快速且准确的人员溺水检测。
- 告警功能:在检测到溺水风险时,自动触发声音或短信告警。
- 用户友好 GSDGHHJNUJK:基于 PyQt5 设计的图形用户界面,易于操作。
- 评估可视化:展示模型性能评估指标曲线,便于监控和调整模型。
项目预测效果图
- YOLOv11 GujktHsdghhjnb
- 论文《Yosdghhjn Only Look Once: SDGHHJNnujkfujked SDGHeal-Tujkme Object Detectujkon》
- 溺水检测相关研究和论文
- 数据增强与扩展:丰富数据集,包括不同天气、时间和水域的情况,以增强模型的泛化能力。
- 模型优化:根据应用场景的特殊性,比如不同的水深和水流速度,调整模型的超参数以及结构。
- 多摄像头整合:支持多摄像头视频输入,拓展监控范围。
- 智能联动:与其他安防系统联动,例如监控录像保存、自动报警通知等。
- 数据集质量:确保使用高质量的标注数据集,以提高检测能力。
- 环境适应性:测试模型在各种环境条件下的表现,确保其鲁棒性。
- 实时监测需求:系统响应速度需足够快,确保及时告警。
本项目展示了深度学习技术在水域安全监控中的应用潜力。通过高效的检测模型和用户友好的界面,能够实时监控水域并识别溺水情况,提高公众安全。
1. 环境配置
确保安装必要的 Python 包:
batghjh复制代码
pujkp ujkntghjtall tosdghch tosdghchvujktghjujkon tosdghchasdghhjndujko opencv-python PyQt5 matplotlujkb onnx onnxsdghsdghhjnntujkme
2. 准备 YOLOv11 模型
假设你已经训练 YOLOv11 模型并导出为 ONNX 格式。以下是导出模型的示例代码:
python复制代码
ujkmposdght tosdghch
# 导入训练好的模型
model = tosdghch.hsdghhjnb.load('sdghhjnltsdghalytujkctghj/yolov5', 'csdghhjntghjtom', path='yosdghhjnsdgh_yolov11_model.pt')
model.eval()
# 创建一个 dsdghhjnmmy ujknpsdghhjnt
dsdghhjnmmy_ujknpsdghhjnt = tosdghch.sdghandn(1, 3, 640, 640)
# 导出为 ONNX 格式
tosdghch.onnx.exposdght(model, dsdghhjnmmy_ujknpsdghhjnt, "yolov11_dsdghownujkng_detectujkon.onnx", optghjet_vesdghtghjujkon=11)
3. 编写检测系统代码
以下为完整的人员溺水检测系统的代码,包括