一、Git地址:
https://github.com/AlpacaDB/selectivesearch
二、使用selectivesearch:
进入到example文件中运行脚本 example.py
# -*- coding: utf-8 -*-
from __future__ import (
division,
print_function,
)
import tensorflow as tf
import skimage.data
import matplotlib.pyplot as plt
import matplotlib.patches as mpatches
import selectivesearch
import numpy as np
import cv2
def main():
#imgCV2 = cv2.imread("mayun.jpg")
# loading astronaut image
img = skimage.data.astronaut()
print("shape2 = "+str(img.shape[2]))
# perform selective search
img_lbl, regions = selectivesearch.selective_search(
img, scale=200, sigma=0.9, min_size=10)
candidates = set()
for r in regions:
# excluding same rectangle (with different segments)
if r['rect'] in candidates:
continue
# excluding regions smaller than 2000 pixels
if r['size'] < 2000:
continue
# distorted rects
x, y, w, h = r['rect']
if w / h > 1.2 or h / w > 1.2:
continue
candidates.add(r['rect'])
# draw rectangles on the original image
fig, ax = plt.subplots(ncols=1, nrows=1, figsize=(6, 6))
ax.imshow(img)
for x, y, w, h in candidates:
print(x, y, w, h)
rect = mpatches.Rectangle(
(x, y), w, h, fill=False, edgecolor='red', linewidth=1)
ax.add_patch(rect)
plt.show()
if __name__ == "__main__":
main()