大数据分析Project-胰腺癌病人模型预测02:死亡or出院(SVM法)

该博客介绍了如何利用支持向量机(SVM)进行胰腺癌病人生死预测的项目。首先排除序号特征,然后将死亡标签转化为alive和dead。接着设置训练集和验证集,运用SVM进行模型训练,并进行参数调整以优化模型性能。
摘要由CSDN通过智能技术生成

先删去病人的序号

> df <- mydata[, -1]

将death的1,0变成alive, dead

df$death <- factor(df$death,levels = c(1,0),labels = c("alive","dead"))

设定训练集和验证集

> train <- sample(nrow(df), 0.8*nrow(df))
> df.train <- df[train,]
> df.validate <- df[-train,]

使用支持向量机SVM

> library(e1071)
> set.seed(100)
> fit.svm <- svm(death~., data = df.train)
> fit.svm

Call:
svm(formula = death ~ ., data = df.train)


Parameters:
   SVM-Type:  C-classification 
 SVM-Kernel:  radial 
       cost:  1 

Number of Support Vectors:  305

进行验证

> svm.pred <- predict(fit.svm, na.omit(df.validate))
> svm.perf <- table(na.omit(df.validate)$death, svm.pred, dnn=c("Actual", "Predicted"))
> svm.perf

      Predicted
Actual  alive dead
  alive    22   25
  dead     12   49<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值