哈密顿算子及拉普拉斯算子的基本性质及证明

本文详细解析了矢量微积分中的关键恒等式,包括哈密尔顿算子的性质,拉普拉斯算子的定义,以及矢量场的旋度和散度之间的关系。通过数学推导,阐述了这些公式在静电场和恒定磁场分析中的应用。
  • 重要公式
    ▽⋅(A⃗×B⃗)=B⃗⋅▽×A⃗−A⃗⋅▽×B⃗ \triangledown \cdot(\vec A \times \vec B)= \vec B \cdot \triangledown \times\vec A-\vec A\cdot\triangledown\times\vec B (A×B)=B×AA×B
  • 证明
    ▽=∂∂xe⃗x+∂∂ye⃗y+∂∂ze⃗z \triangledown=\frac{\partial}{\partial x}\vec e_x+\frac{\partial }{\partial y}\vec e_y+\frac{\partial }{\partial z}\vec e_z =xex+yey+zez
    A⃗×B⃗=∣e⃗xe⃗ye⃗zAxAyAzBxByBz∣=(AyBz−AzBy)e⃗x+(AzBx−AxBz)e⃗y+(AxBy−AyBx)e⃗z \vec A \times \vec B=\left | \begin{matrix} \vec e_x &\vec e_y &\vec e_z\\ A_x & A_y & A_z\\ B_x & B_y & B_z \end{matrix} \right |\\ =(A_yB_z-A_zB_y)\vec e_x+(A_zB_x-A_xB_z)\vec e_y+(A_xB_y-A_yB_x)\vec e_z A×B=exAxBxeyAyByezAzBz=(AyBzAzBy)ex+(AzBxAxBz)ey+(AxByAyBx)ez
    ▽⋅(A⃗×B⃗)=(∂∂xe⃗x+∂∂ye⃗y+∂∂ze⃗z)⋅((AyBz−AzBy)e⃗x+(AzBx−AxBz)e⃗y+(AxBy−AyBx)e⃗z)=∂(AyBz−AzBy)∂x+∂(AzBx−AxBz)∂y+∂(AxBy−AyBx)∂z=∣∂∂x∂∂y∂∂zAxAyAzBxByBz∣ \triangledown \cdot(\vec A \times \vec B)=(\frac{\partial}{\partial x}\vec e_x+\frac{\partial }{\partial y}\vec e_y+\frac{\partial }{\partial z}\vec e_z) \cdot\bigg((A_yB_z-A_zB_y)\vec e_x+(A_zB_x-A_xB_z)\vec e_y+(A_xB_y-A_yB_x)\vec e_z\bigg)\\ =\frac{\partial{(A_yB_z-A_zB_y)}}{\partial x}+\frac{\partial{(A_zB_x-A_xB_z)}}{\partial y}+\frac{\partial{(A_xB_y-A_yB_x)}}{\partial z}\\ =\left | \begin{matrix} \frac{\partial}{\partial x}&\frac{\partial }{\partial y}&\frac{\partial }{\partial z}\\ A_x & A_y & A_z\\ B_x & B_y & B_z \end{matrix} \right |\\ (A×B)=(xex+yey+zez)((AyBzAzBy)ex+(AzBxAxBz)ey+(AxByAyBx)ez)=x(AyBzAzBy)+y(AzBxAxBz)+z(AxByAyBx)=xAxBxyAyByzAzBz

B⃗⋅▽×A⃗−A⃗⋅▽×B⃗=B⃗⋅∣e⃗xe⃗ye⃗z∂∂x∂∂y∂∂zAxAyAz∣−A⃗⋅∣e⃗xe⃗ye⃗z∂∂x∂∂y∂∂zBxByBz∣=(Bxe⃗x+Bye⃗y+Bze⃗z)⋅((∂Az∂y−∂Ay∂z)e⃗x+(∂Ax∂z−∂Az∂x)e⃗y+(∂Ay∂x−∂Ax∂y)e⃗z)−(Axe⃗x+Aye⃗y+Aze⃗z)⋅((∂Bz∂y−∂By∂z)e⃗x+(∂Bx∂z−∂Bz∂x)e⃗y+(∂By∂x−∂Bx∂y)e⃗z)=Bx(∂Az∂y−∂Ay∂z)+By(∂Ax∂z−∂Az∂x)+Bz(∂Ay∂x−∂Ax∂y)−(Ax(∂Bz∂y−∂By∂z)+Ay(∂Bx∂z−∂Bz∂x)+Az(∂By∂x−∂Bx∂y))∵Bz∂Ay∂x−By∂Az∂x+Ay∂Bz∂x−Az∂By∂x=(Bz∂Ay∂x+Ay∂Bz∂x)−(By∂Az∂x+Az∂By∂x)=∂(AyBz)∂x−∂(AzBy)∂x=∂(AyBz−AzBy)∂x \vec B \cdot \triangledown \times\vec A-\vec A\cdot\triangledown\times\vec B=\vec B \cdot \left | \begin{matrix} \vec e_x &\vec e_y &\vec e_z\\ \frac{\partial}{\partial x}&\frac{\partial }{\partial y}&\frac{\partial }{\partial z}\\ A_x & A_y & A_z \end{matrix} \right | - \vec A \cdot \left | \begin{matrix} \vec e_x &\vec e_y &\vec e_z\\ \frac{\partial}{\partial x}&\frac{\partial }{\partial y}&\frac{\partial }{\partial z}\\ B_x & B_y & B_z \end{matrix}\right | \\ = (B_x\vec e_x+B_y\vec e_y+B_z\vec e_z)\cdot\bigg( (\frac{\partial A_z}{\partial y}-\frac{\partial A_y}{\partial z})\vec e_x+(\frac{\partial A_x}{\partial z}-\frac{\partial A_z}{\partial x})\vec e_y+(\frac{\partial A_y}{\partial x}-\frac{\partial A_x}{\partial y})\vec e_z \bigg)\\ -(A_x\vec e_x+A_y\vec e_y+A_z\vec e_z)\cdot\bigg( (\frac{\partial B_z}{\partial y}-\frac{\partial B_y}{\partial z})\vec e_x+(\frac{\partial B_x}{\partial z}-\frac{\partial B_z}{\partial x})\vec e_y+(\frac{\partial B_y}{\partial x}-\frac{\partial B_x}{\partial y})\vec e_z \bigg)\\ =B_x( \frac{\partial A_z}{\partial y}-\frac{\partial A_y}{\partial z})+ B_y(\frac{\partial A_x}{\partial z}-\frac{\partial A_z}{\partial x})+ B_z(\frac{\partial A_y}{\partial x}-\frac{\partial A_x}{\partial y})\\ -\bigg(A_x( \frac{\partial B_z}{\partial y}-\frac{\partial B_y}{\partial z})+ A_y(\frac{\partial B_x}{\partial z}-\frac{\partial B_z}{\partial x})+ A_z(\frac{\partial B_y}{\partial x}-\frac{\partial B_x}{\partial y})\bigg)\\ \because B_z\frac{\partial A_y}{\partial x}-B_y\frac{\partial A_z}{\partial x}+ A_y\frac{\partial B_z}{\partial x}- A_z\frac{\partial B_y}{\partial x}= \bigg(B_z\frac{\partial A_y}{\partial x}+ A_y\frac{\partial B_z}{\partial x}\bigg)-\bigg(B_y\frac{\partial A_z}{\partial x}+A_z\frac{\partial B_y}{\partial x} \bigg)\\ =\frac{\partial( A_yB_z)}{\partial x}-\frac{\partial( A_zB_y)}{\partial x}=\frac{\partial( A_yB_z-A_zB_y)}{\partial x} B×AA×B=BexxAxeyyAyezzAzAexxBxeyyByezzBz=(Bxex+Byey+Bzez)((yAzzAy)ex+(zAxxAz)ey+(xAyyAx)ez)(Axex+Ayey+Azez)((yBzzBy)ex+(zBxxBz)ey+(xByyBx)ez)=Bx(yAzzAy)+By(zAxxAz)+Bz(xAyyAx)(Ax(yBzzBy)+Ay(zBxxBz)+Az(xByyBx))BzxAyByxAz+AyxBzAzxBy=(BzxAy+AyxBz)(ByxAz+AzxBy)=x(AyBz)x(AzBy)=x(AyBzAzBy)

  • 同理其他三项可得,证毕
  • 哈密尔顿算子首先考虑矢量性再考虑微分性
    ▽×(μA⃗)=μ▽×A⃗+▽μ×A⃗ \triangledown\times(\mu\vec A)=\mu\triangledown\times\vec A+\triangledown\mu\times\vec A ×(μA)=μ×A+μ×A
  • μ\muμ 是标量函数,取了梯度变为矢量
    ▽×(▽μ)≡0 \triangledown\times(\triangledown\mu)\equiv 0 ×(μ)0
    ▽μ=∂μ∂xe⃗x+∂μ∂ye⃗y+∂μ∂xe⃗z▽×(▽μ)=∣e⃗xe⃗ye⃗z∂∂x∂∂y∂∂z∂μ∂x∂μ∂y∂μ∂z∣=(∂2μ∂z∂y−∂2μ∂y∂z)e⃗x+⋯=0 \triangledown\mu=\frac{\partial \mu}{\partial x}\vec e_x+\frac{\partial \mu}{\partial y}\vec e_y+\frac{\partial\mu}{\partial x}\vec e_z\\ \triangledown\times(\triangledown\mu)=\left | \begin{matrix} \vec e_x &\vec e_y &\vec e_z\\ \frac{\partial}{\partial x}&\frac{\partial }{\partial y}&\frac{\partial }{\partial z}\\ \frac{\partial\mu}{\partial x} & \frac{\partial\mu}{\partial y} & \frac{\partial\mu}{\partial z} \end{matrix} \right |\\ =\bigg(\frac{\partial^2\mu }{\partial z\partial y}-\frac{\partial^2\mu }{\partial y\partial z}\bigg)\vec e_x+\cdots=0 μ=xμex+yμey+xμez×(μ)=exxxμeyyyμezzzμ=(zy2μyz2μ)ex+=0
  • 取旋度仍为矢量
    ▽⋅(▽×A⃗)≡0 \triangledown\cdot(\triangledown\times\vec A)\equiv 0 (×A)0
    ▽⋅(▽×A⃗)=∣∂∂x∂∂y∂∂z∂∂x∂∂y∂∂zAxAyAz∣=0 \triangledown\cdot(\triangledown\times\vec A)= \left | \begin{matrix} \frac{\partial}{\partial x}&\frac{\partial }{\partial y}&\frac{\partial }{\partial z}\\ \frac{\partial}{\partial x}&\frac{\partial }{\partial y}&\frac{\partial }{\partial z}\\ A_x & A_y & A_z \end{matrix} \right | =0 (×A)=xxAxyyAyzzAz=0
  • 两个恒等式在静电场分析和恒定磁场分析里很重要
  • 拉普拉斯算子
    ▽⋅(▽μ)=▽2μ \triangledown\cdot(\triangledown\mu)=\triangledown^2\mu (μ)=2μ
    ▽⋅(▽μ)=(∂∂xe⃗x+∂∂ye⃗y+∂∂ze⃗z)(∂μ∂xe⃗x+∂μ∂ye⃗y+∂μ∂xe⃗z)=∂2μ∂x2+∂2μ∂y2+∂2μ∂z2 \triangledown\cdot(\triangledown\mu)=(\frac{\partial}{\partial x}\vec e_x+\frac{\partial }{\partial y}\vec e_y+\frac{\partial }{\partial z}\vec e_z)(\frac{\partial \mu}{\partial x}\vec e_x+\frac{\partial \mu}{\partial y}\vec e_y+\frac{\partial\mu}{\partial x}\vec e_z)\\ =\frac{\partial^2\mu }{\partial x^2}+\frac{\partial^2\mu }{\partial y^2}+\frac{\partial^2\mu }{\partial z^2} (μ)=(xex+yey+zez)(xμex+yμey+xμez)=x22μ+y22μ+z22μ
  • 旋了又旋,矢量的拉普拉斯算子
    ▽×(▽×A⃗)=▽(▽⋅A⃗)−▽2A⃗ \triangledown\times(\triangledown\times\vec A)=\triangledown(\triangledown\cdot\vec A)-\triangledown^2\vec A ×(×A)=(A)2A
    ▽×(▽×A⃗)=▽×((∂Az∂y−∂Ay∂z)e⃗x+(∂Ax∂z−∂Az∂x)e⃗y+(∂Ay∂x−∂Ax∂y)e⃗z)=∣e⃗xe⃗ye⃗z∂∂x∂∂y∂∂z(∂Az∂y−∂Ay∂z)(∂Ax∂z−∂Az∂x)(∂Ay∂x−∂Ax∂y)∣=(∂Ay∂x∂y−∂Ax∂2y−∂Ax∂2z+∂Az∂x∂z)e⃗x+(∂Az∂y∂z−∂Ay∂2z−∂Ay∂2x+∂Ax∂y∂x)e⃗y+(∂Ax∂z∂x−∂Az∂2x−∂Az∂2y+∂Ay∂z∂y)e⃗z=(∂Ay∂x∂y+∂Az∂x∂z)e⃗x+(∂Az∂y∂z+∂Ax∂y∂x)e⃗y+(∂Ax∂z∂x+∂Ay∂z∂y)e⃗z−((∂Ax∂2y+∂Ax∂2z)e⃗x+(∂Ay∂2z+∂Ay∂2x)e⃗y+(∂Az∂2x+∂Az∂2y)e⃗z) \triangledown\times(\triangledown\times\vec A)=\triangledown\times\bigg((\frac{\partial A_z}{\partial y}-\frac{\partial A_y}{\partial z})\vec e_x+(\frac{\partial A_x}{\partial z}-\frac{\partial A_z}{\partial x})\vec e_y+(\frac{\partial A_y}{\partial x}-\frac{\partial A_x}{\partial y})\vec e_z\bigg)\\ = \left | \begin{matrix} \vec e_x &\vec e_y &\vec e_z\\ \frac{\partial}{\partial x}&\frac{\partial }{\partial y}&\frac{\partial }{\partial z}\\ (\frac{\partial A_z}{\partial y}-\frac{\partial A_y}{\partial z}) &(\frac{\partial A_x}{\partial z}-\frac{\partial A_z}{\partial x}) &(\frac{\partial A_y}{\partial x}-\frac{\partial A_x}{\partial y}) \end{matrix} \right | \\ =(\frac{\partial A_y}{\partial x\partial y}-\frac{\partial A_x}{\partial^2 y}-\frac{\partial A_x}{\partial^2 z}+\frac{\partial A_z}{\partial x\partial z})\vec e_x\\ +(\frac{\partial A_z}{\partial y\partial z}-\frac{\partial A_y}{\partial^2 z}-\frac{\partial A_y}{\partial^2 x}+\frac{\partial A_x}{\partial y\partial x})\vec e_y\\ +(\frac{\partial A_x}{\partial z\partial x}-\frac{\partial A_z}{\partial^2 x}-\frac{\partial A_z}{\partial^2 y}+\frac{\partial A_y}{\partial z\partial y})\vec e_z\\ =(\frac{\partial A_y}{\partial x\partial y}+\frac{\partial A_z}{\partial x\partial z})\vec e_x+(\frac{\partial A_z}{\partial y\partial z}+\frac{\partial A_x}{\partial y\partial x})\vec e_y+(\frac{\partial A_x}{\partial z\partial x}+\frac{\partial A_y}{\partial z\partial y})\vec e_z\\ -\bigg((\frac{\partial A_x}{\partial^2 y}+\frac{\partial A_x}{\partial^2 z})\vec e_x+(\frac{\partial A_y}{\partial^2 z}+\frac{\partial A_y}{\partial^2 x})\vec e_y+(\frac{\partial A_z}{\partial^2 x}+\frac{\partial A_z}{\partial^2 y})\vec e_z \bigg) ×(×A)=×((yAzzAy)ex+(zAxxAz)ey+(xAyyAx)ez)=exx(yAzzAy)eyy(zAxxAz)ezz(xAyyAx)=(xyAy2yAx2zAx+xzAz)ex+(yzAz2zAy2xAy+yxAx)ey+(zxAx2xAz2yAz+zyAy)ez=(xyAy+xzAz)ex+(yzAz+yxAx)ey+(zxAx+zyAy)ez((2yAx+2zAx)ex+(2zAy+2xAy)ey+(2xAz+2yAz)ez)

▽(▽⋅A⃗)=▽(∂Ax∂x+∂Ay∂y+∂Az∂z)=(∂∂xe⃗x)⋅(∂Ax∂x+∂Ay∂y+∂Az∂z)+⋯=∂Ax∂2xe⃗x+(∂Ay∂y∂x+∂Az∂z∂x)e⃗x+⋯ \triangledown(\triangledown\cdot\vec A)=\triangledown\bigg(\frac{\partial A_x}{\partial x}+\frac{\partial A_y}{\partial y}+\frac{\partial A_z}{\partial z}\bigg)\\ =\bigg(\frac{\partial}{\partial x}\vec e_x\bigg)\cdot\bigg(\frac{\partial A_x}{\partial x}+\frac{\partial A_y}{\partial y}+\frac{\partial A_z}{\partial z}\bigg)+\cdots\\ =\frac{\partial A_x}{\partial^2 x}\vec e_x+\bigg(\frac{\partial A_y}{\partial y\partial x}+\frac{\partial A_z}{\partial z\partial x}\bigg)\vec e_x+\cdots (A)=(xAx+yAy+zAz)=(xex)(xAx+yAy+zAz)+=2xAxex+(yxAy+zxAz)ex+

▽2A⃗=▽2Axe⃗x+▽2Aye⃗y+▽2Aze⃗z=(∂2Ax∂x2+∂2Ax∂y2+∂2Ax∂z2)e⃗x+(∂2Ay∂x2+∂2Ay∂y2+∂2Ay∂z2)e⃗y+(∂2Az∂x2+∂2Az∂y2+∂2Az∂z2)e⃗z \triangledown^2\vec A=\triangledown^2A_x\vec e_x+\triangledown^2A_y\vec e_y+\triangledown^2A_z\vec e_z\\ =\bigg(\frac{\partial^2A_x }{\partial x^2}+\frac{\partial^2A_x }{\partial y^2}+\frac{\partial^2A_x }{\partial z^2}\bigg)\vec e_x\\ +\bigg(\frac{\partial^2A_y }{\partial x^2}+\frac{\partial^2A_y }{\partial y^2}+\frac{\partial^2A_y }{\partial z^2}\bigg)\vec e_y\\ +\bigg(\frac{\partial^2A_z }{\partial x^2}+\frac{\partial^2A_z }{\partial y^2}+\frac{\partial^2A_z }{\partial z^2}\bigg)\vec e_z 2A=2Axex+2Ayey+2Azez=(x22Ax+y22Ax+z22Ax)ex+(x22Ay+y22Ay+z22Ay)ey+(x22Az+y22Az+z22Az)ez
▽(▽⋅A⃗)−▽2A⃗=∂Ax∂2xe⃗x+(∂Ay∂y∂x+∂Az∂z∂x)e⃗x−(∂2Ax∂x2+∂2Ax∂y2+∂2Ax∂z2)e⃗x+⋯=(∂Ay∂y∂x+∂Az∂z∂x)e⃗x−(∂2Ax∂y2+∂2Ax∂z2)e⃗x+⋯ \triangledown(\triangledown\cdot\vec A)-\triangledown^2\vec A\\ =\frac{\partial A_x}{\partial^2 x}\vec e_x+\bigg(\frac{\partial A_y}{\partial y\partial x}+\frac{\partial A_z}{\partial z\partial x}\bigg)\vec e_x-\bigg(\frac{\partial^2A_x }{\partial x^2}+\frac{\partial^2A_x }{\partial y^2}+\frac{\partial^2A_x }{\partial z^2}\bigg)\vec e_x+\cdots\\ =\bigg(\frac{\partial A_y}{\partial y\partial x}+\frac{\partial A_z}{\partial z\partial x}\bigg)\vec e_x-\bigg(\frac{\partial^2A_x }{\partial y^2}+\frac{\partial^2A_x }{\partial z^2}\bigg)\vec e_x+\cdots (A)2A=2xAxex+(yxAy+zxAz)ex(x22Ax+y22Ax+z22Ax)ex+=(yxAy+zxAz)ex(y22Ax+z22Ax)ex+

  • 其它三项均可证得,证毕
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值