哈密顿算子及拉普拉斯算子的基本性质及证明

  • 重要公式
    ▽ ⋅ ( A ⃗ × B ⃗ ) = B ⃗ ⋅ ▽ × A ⃗ − A ⃗ ⋅ ▽ × B ⃗ \triangledown \cdot(\vec A \times \vec B)= \vec B \cdot \triangledown \times\vec A-\vec A\cdot\triangledown\times\vec B (A ×B )=B ×A A ×B
  • 证明
    ▽ = ∂ ∂ x e ⃗ x + ∂ ∂ y e ⃗ y + ∂ ∂ z e ⃗ z \triangledown=\frac{\partial}{\partial x}\vec e_x+\frac{\partial }{\partial y}\vec e_y+\frac{\partial }{\partial z}\vec e_z =xe x+ye y+ze z
    A ⃗ × B ⃗ = ∣ e ⃗ x e ⃗ y e ⃗ z A x A y A z B x B y B z ∣ = ( A y B z − A z B y ) e ⃗ x + ( A z B x − A x B z ) e ⃗ y + ( A x B y − A y B x ) e ⃗ z \vec A \times \vec B=\left | \begin{matrix} \vec e_x &\vec e_y &\vec e_z\\ A_x & A_y & A_z\\ B_x & B_y & B_z \end{matrix} \right |\\ =(A_yB_z-A_zB_y)\vec e_x+(A_zB_x-A_xB_z)\vec e_y+(A_xB_y-A_yB_x)\vec e_z A ×B =e xAxBxe yAyBye zAzBz=(AyBzAzBy)e x+(AzBxAxBz)e y+(AxByAyBx)e z
    ▽ ⋅ ( A ⃗ × B ⃗ ) = ( ∂ ∂ x e ⃗ x + ∂ ∂ y e ⃗ y + ∂ ∂ z e ⃗ z ) ⋅ ( ( A y B z − A z B y ) e ⃗ x + ( A z B x − A x B z ) e ⃗ y + ( A x B y − A y B x ) e ⃗ z ) = ∂ ( A y B z − A z B y ) ∂ x + ∂ ( A z B x − A x B z ) ∂ y + ∂ ( A x B y − A y B x ) ∂ z = ∣ ∂ ∂ x ∂ ∂ y ∂ ∂ z A x A y A z B x B y B z ∣ \triangledown \cdot(\vec A \times \vec B)=(\frac{\partial}{\partial x}\vec e_x+\frac{\partial }{\partial y}\vec e_y+\frac{\partial }{\partial z}\vec e_z) \cdot\bigg((A_yB_z-A_zB_y)\vec e_x+(A_zB_x-A_xB_z)\vec e_y+(A_xB_y-A_yB_x)\vec e_z\bigg)\\ =\frac{\partial{(A_yB_z-A_zB_y)}}{\partial x}+\frac{\partial{(A_zB_x-A_xB_z)}}{\partial y}+\frac{\partial{(A_xB_y-A_yB_x)}}{\partial z}\\ =\left | \begin{matrix} \frac{\partial}{\partial x}&\frac{\partial }{\partial y}&\frac{\partial }{\partial z}\\ A_x & A_y & A_z\\ B_x & B_y & B_z \end{matrix} \right |\\ (A ×B )=(xe x+ye y+ze z)((AyBzAzBy)e x+(AzBxAxBz)e y+(AxByAyBx)e z)=x(AyBzAzBy)+y(AzBxAxBz)+z(AxByAyBx)=xAxBxyAyByzAzBz

B ⃗ ⋅ ▽ × A ⃗ − A ⃗ ⋅ ▽ × B ⃗ = B ⃗ ⋅ ∣ e ⃗ x e ⃗ y e ⃗ z ∂ ∂ x ∂ ∂ y ∂ ∂ z A x A y A z ∣ − A ⃗ ⋅ ∣ e ⃗ x e ⃗ y e ⃗ z ∂ ∂ x ∂ ∂ y ∂ ∂ z B x B y B z ∣ = ( B x e ⃗ x + B y e ⃗ y + B z e ⃗ z ) ⋅ ( ( ∂ A z ∂ y − ∂ A y ∂ z ) e ⃗ x + ( ∂ A x ∂ z − ∂ A z ∂ x ) e ⃗ y + ( ∂ A y ∂ x − ∂ A x ∂ y ) e ⃗ z ) − ( A x e ⃗ x + A y e ⃗ y + A z e ⃗ z ) ⋅ ( ( ∂ B z ∂ y − ∂ B y ∂ z ) e ⃗ x + ( ∂ B x ∂ z − ∂ B z ∂ x ) e ⃗ y + ( ∂ B y ∂ x − ∂ B x ∂ y ) e ⃗ z ) = B x ( ∂ A z ∂ y − ∂ A y ∂ z ) + B y ( ∂ A x ∂ z − ∂ A z ∂ x ) + B z ( ∂ A y ∂ x − ∂ A x ∂ y ) − ( A x ( ∂ B z ∂ y − ∂ B y ∂ z ) + A y ( ∂ B x ∂ z − ∂ B z ∂ x ) + A z ( ∂ B y ∂ x − ∂ B x ∂ y ) ) ∵ B z ∂ A y ∂ x − B y ∂ A z ∂ x + A y ∂ B z ∂ x − A z ∂ B y ∂ x = ( B z ∂ A y ∂ x + A y ∂ B z ∂ x ) − ( B y ∂ A z ∂ x + A z ∂ B y ∂ x ) = ∂ ( A y B z ) ∂ x − ∂ ( A z B y ) ∂ x = ∂ ( A y B z − A z B y ) ∂ x \vec B \cdot \triangledown \times\vec A-\vec A\cdot\triangledown\times\vec B=\vec B \cdot \left | \begin{matrix} \vec e_x &\vec e_y &\vec e_z\\ \frac{\partial}{\partial x}&\frac{\partial }{\partial y}&\frac{\partial }{\partial z}\\ A_x & A_y & A_z \end{matrix} \right | - \vec A \cdot \left | \begin{matrix} \vec e_x &\vec e_y &\vec e_z\\ \frac{\partial}{\partial x}&\frac{\partial }{\partial y}&\frac{\partial }{\partial z}\\ B_x & B_y & B_z \end{matrix}\right | \\ = (B_x\vec e_x+B_y\vec e_y+B_z\vec e_z)\cdot\bigg( (\frac{\partial A_z}{\partial y}-\frac{\partial A_y}{\partial z})\vec e_x+(\frac{\partial A_x}{\partial z}-\frac{\partial A_z}{\partial x})\vec e_y+(\frac{\partial A_y}{\partial x}-\frac{\partial A_x}{\partial y})\vec e_z \bigg)\\ -(A_x\vec e_x+A_y\vec e_y+A_z\vec e_z)\cdot\bigg( (\frac{\partial B_z}{\partial y}-\frac{\partial B_y}{\partial z})\vec e_x+(\frac{\partial B_x}{\partial z}-\frac{\partial B_z}{\partial x})\vec e_y+(\frac{\partial B_y}{\partial x}-\frac{\partial B_x}{\partial y})\vec e_z \bigg)\\ =B_x( \frac{\partial A_z}{\partial y}-\frac{\partial A_y}{\partial z})+ B_y(\frac{\partial A_x}{\partial z}-\frac{\partial A_z}{\partial x})+ B_z(\frac{\partial A_y}{\partial x}-\frac{\partial A_x}{\partial y})\\ -\bigg(A_x( \frac{\partial B_z}{\partial y}-\frac{\partial B_y}{\partial z})+ A_y(\frac{\partial B_x}{\partial z}-\frac{\partial B_z}{\partial x})+ A_z(\frac{\partial B_y}{\partial x}-\frac{\partial B_x}{\partial y})\bigg)\\ \because B_z\frac{\partial A_y}{\partial x}-B_y\frac{\partial A_z}{\partial x}+ A_y\frac{\partial B_z}{\partial x}- A_z\frac{\partial B_y}{\partial x}= \bigg(B_z\frac{\partial A_y}{\partial x}+ A_y\frac{\partial B_z}{\partial x}\bigg)-\bigg(B_y\frac{\partial A_z}{\partial x}+A_z\frac{\partial B_y}{\partial x} \bigg)\\ =\frac{\partial( A_yB_z)}{\partial x}-\frac{\partial( A_zB_y)}{\partial x}=\frac{\partial( A_yB_z-A_zB_y)}{\partial x} B ×A A ×B =B e xxAxe yyAye zzAzA e xxBxe yyBye zzBz=(Bxe x+Bye y+Bze z)((yAzzAy)e x+(zAxxAz)e y+(xAyyAx)e z)(Axe x+Aye y+Aze z)((yBzzBy)e x+(zBxxBz)e y+(xByyBx)e z)=Bx(yAzzAy)+By(zAxxAz)+Bz(xAyyAx)(Ax(yBzzBy)+Ay(zBxxBz)+Az(xByyBx))BzxAyByxAz+AyxBzAzxBy=(BzxAy+AyxBz)(ByxAz+AzxBy)=x(AyBz)x(AzBy)=x(AyBzAzBy)

  • 同理其他三项可得,证毕
  • 哈密尔顿算子首先考虑矢量性再考虑微分性
    ▽ × ( μ A ⃗ ) = μ ▽ × A ⃗ + ▽ μ × A ⃗ \triangledown\times(\mu\vec A)=\mu\triangledown\times\vec A+\triangledown\mu\times\vec A ×(μA )=μ×A +μ×A
  • μ \mu μ 是标量函数,取了梯度变为矢量
    ▽ × ( ▽ μ ) ≡ 0 \triangledown\times(\triangledown\mu)\equiv 0 ×(μ)0
    ▽ μ = ∂ μ ∂ x e ⃗ x + ∂ μ ∂ y e ⃗ y + ∂ μ ∂ x e ⃗ z ▽ × ( ▽ μ ) = ∣ e ⃗ x e ⃗ y e ⃗ z ∂ ∂ x ∂ ∂ y ∂ ∂ z ∂ μ ∂ x ∂ μ ∂ y ∂ μ ∂ z ∣ = ( ∂ 2 μ ∂ z ∂ y − ∂ 2 μ ∂ y ∂ z ) e ⃗ x + ⋯ = 0 \triangledown\mu=\frac{\partial \mu}{\partial x}\vec e_x+\frac{\partial \mu}{\partial y}\vec e_y+\frac{\partial\mu}{\partial x}\vec e_z\\ \triangledown\times(\triangledown\mu)=\left | \begin{matrix} \vec e_x &\vec e_y &\vec e_z\\ \frac{\partial}{\partial x}&\frac{\partial }{\partial y}&\frac{\partial }{\partial z}\\ \frac{\partial\mu}{\partial x} & \frac{\partial\mu}{\partial y} & \frac{\partial\mu}{\partial z} \end{matrix} \right |\\ =\bigg(\frac{\partial^2\mu }{\partial z\partial y}-\frac{\partial^2\mu }{\partial y\partial z}\bigg)\vec e_x+\cdots=0 μ=xμe x+yμe y+xμe z×(μ)=e xxxμe yyyμe zzzμ=(zy2μyz2μ)e x+=0
  • 取旋度仍为矢量
    ▽ ⋅ ( ▽ × A ⃗ ) ≡ 0 \triangledown\cdot(\triangledown\times\vec A)\equiv 0 (×A )0
    ▽ ⋅ ( ▽ × A ⃗ ) = ∣ ∂ ∂ x ∂ ∂ y ∂ ∂ z ∂ ∂ x ∂ ∂ y ∂ ∂ z A x A y A z ∣ = 0 \triangledown\cdot(\triangledown\times\vec A)= \left | \begin{matrix} \frac{\partial}{\partial x}&\frac{\partial }{\partial y}&\frac{\partial }{\partial z}\\ \frac{\partial}{\partial x}&\frac{\partial }{\partial y}&\frac{\partial }{\partial z}\\ A_x & A_y & A_z \end{matrix} \right | =0 (×A )=xxAxyyAyzzAz=0
  • 两个恒等式在静电场分析和恒定磁场分析里很重要
  • 拉普拉斯算子
    ▽ ⋅ ( ▽ μ ) = ▽ 2 μ \triangledown\cdot(\triangledown\mu)=\triangledown^2\mu (μ)=2μ
    ▽ ⋅ ( ▽ μ ) = ( ∂ ∂ x e ⃗ x + ∂ ∂ y e ⃗ y + ∂ ∂ z e ⃗ z ) ( ∂ μ ∂ x e ⃗ x + ∂ μ ∂ y e ⃗ y + ∂ μ ∂ x e ⃗ z ) = ∂ 2 μ ∂ x 2 + ∂ 2 μ ∂ y 2 + ∂ 2 μ ∂ z 2 \triangledown\cdot(\triangledown\mu)=(\frac{\partial}{\partial x}\vec e_x+\frac{\partial }{\partial y}\vec e_y+\frac{\partial }{\partial z}\vec e_z)(\frac{\partial \mu}{\partial x}\vec e_x+\frac{\partial \mu}{\partial y}\vec e_y+\frac{\partial\mu}{\partial x}\vec e_z)\\ =\frac{\partial^2\mu }{\partial x^2}+\frac{\partial^2\mu }{\partial y^2}+\frac{\partial^2\mu }{\partial z^2} (μ)=(xe x+ye y+ze z)(xμe x+yμe y+xμe z)=x22μ+y22μ+z22μ
  • 旋了又旋,矢量的拉普拉斯算子
    ▽ × ( ▽ × A ⃗ ) = ▽ ( ▽ ⋅ A ⃗ ) − ▽ 2 A ⃗ \triangledown\times(\triangledown\times\vec A)=\triangledown(\triangledown\cdot\vec A)-\triangledown^2\vec A ×(×A )=(A )2A
    ▽ × ( ▽ × A ⃗ ) = ▽ × ( ( ∂ A z ∂ y − ∂ A y ∂ z ) e ⃗ x + ( ∂ A x ∂ z − ∂ A z ∂ x ) e ⃗ y + ( ∂ A y ∂ x − ∂ A x ∂ y ) e ⃗ z ) = ∣ e ⃗ x e ⃗ y e ⃗ z ∂ ∂ x ∂ ∂ y ∂ ∂ z ( ∂ A z ∂ y − ∂ A y ∂ z ) ( ∂ A x ∂ z − ∂ A z ∂ x ) ( ∂ A y ∂ x − ∂ A x ∂ y ) ∣ = ( ∂ A y ∂ x ∂ y − ∂ A x ∂ 2 y − ∂ A x ∂ 2 z + ∂ A z ∂ x ∂ z ) e ⃗ x + ( ∂ A z ∂ y ∂ z − ∂ A y ∂ 2 z − ∂ A y ∂ 2 x + ∂ A x ∂ y ∂ x ) e ⃗ y + ( ∂ A x ∂ z ∂ x − ∂ A z ∂ 2 x − ∂ A z ∂ 2 y + ∂ A y ∂ z ∂ y ) e ⃗ z = ( ∂ A y ∂ x ∂ y + ∂ A z ∂ x ∂ z ) e ⃗ x + ( ∂ A z ∂ y ∂ z + ∂ A x ∂ y ∂ x ) e ⃗ y + ( ∂ A x ∂ z ∂ x + ∂ A y ∂ z ∂ y ) e ⃗ z − ( ( ∂ A x ∂ 2 y + ∂ A x ∂ 2 z ) e ⃗ x + ( ∂ A y ∂ 2 z + ∂ A y ∂ 2 x ) e ⃗ y + ( ∂ A z ∂ 2 x + ∂ A z ∂ 2 y ) e ⃗ z ) \triangledown\times(\triangledown\times\vec A)=\triangledown\times\bigg((\frac{\partial A_z}{\partial y}-\frac{\partial A_y}{\partial z})\vec e_x+(\frac{\partial A_x}{\partial z}-\frac{\partial A_z}{\partial x})\vec e_y+(\frac{\partial A_y}{\partial x}-\frac{\partial A_x}{\partial y})\vec e_z\bigg)\\ = \left | \begin{matrix} \vec e_x &\vec e_y &\vec e_z\\ \frac{\partial}{\partial x}&\frac{\partial }{\partial y}&\frac{\partial }{\partial z}\\ (\frac{\partial A_z}{\partial y}-\frac{\partial A_y}{\partial z}) &(\frac{\partial A_x}{\partial z}-\frac{\partial A_z}{\partial x}) &(\frac{\partial A_y}{\partial x}-\frac{\partial A_x}{\partial y}) \end{matrix} \right | \\ =(\frac{\partial A_y}{\partial x\partial y}-\frac{\partial A_x}{\partial^2 y}-\frac{\partial A_x}{\partial^2 z}+\frac{\partial A_z}{\partial x\partial z})\vec e_x\\ +(\frac{\partial A_z}{\partial y\partial z}-\frac{\partial A_y}{\partial^2 z}-\frac{\partial A_y}{\partial^2 x}+\frac{\partial A_x}{\partial y\partial x})\vec e_y\\ +(\frac{\partial A_x}{\partial z\partial x}-\frac{\partial A_z}{\partial^2 x}-\frac{\partial A_z}{\partial^2 y}+\frac{\partial A_y}{\partial z\partial y})\vec e_z\\ =(\frac{\partial A_y}{\partial x\partial y}+\frac{\partial A_z}{\partial x\partial z})\vec e_x+(\frac{\partial A_z}{\partial y\partial z}+\frac{\partial A_x}{\partial y\partial x})\vec e_y+(\frac{\partial A_x}{\partial z\partial x}+\frac{\partial A_y}{\partial z\partial y})\vec e_z\\ -\bigg((\frac{\partial A_x}{\partial^2 y}+\frac{\partial A_x}{\partial^2 z})\vec e_x+(\frac{\partial A_y}{\partial^2 z}+\frac{\partial A_y}{\partial^2 x})\vec e_y+(\frac{\partial A_z}{\partial^2 x}+\frac{\partial A_z}{\partial^2 y})\vec e_z \bigg) ×(×A )=×((yAzzAy)e x+(zAxxAz)e y+(xAyyAx)e z)=e xx(yAzzAy)e yy(zAxxAz)e zz(xAyyAx)=(xyAy2yAx2zAx+xzAz)e x+(yzAz2zAy2xAy+yxAx)e y+(zxAx2xAz2yAz+zyAy)e z=(xyAy+xzAz)e x+(yzAz+yxAx)e y+(zxAx+zyAy)e z((2yAx+2zAx)e x+(2zAy+2xAy)e y+(2xAz+2yAz)e z)

▽ ( ▽ ⋅ A ⃗ ) = ▽ ( ∂ A x ∂ x + ∂ A y ∂ y + ∂ A z ∂ z ) = ( ∂ ∂ x e ⃗ x ) ⋅ ( ∂ A x ∂ x + ∂ A y ∂ y + ∂ A z ∂ z ) + ⋯ = ∂ A x ∂ 2 x e ⃗ x + ( ∂ A y ∂ y ∂ x + ∂ A z ∂ z ∂ x ) e ⃗ x + ⋯ \triangledown(\triangledown\cdot\vec A)=\triangledown\bigg(\frac{\partial A_x}{\partial x}+\frac{\partial A_y}{\partial y}+\frac{\partial A_z}{\partial z}\bigg)\\ =\bigg(\frac{\partial}{\partial x}\vec e_x\bigg)\cdot\bigg(\frac{\partial A_x}{\partial x}+\frac{\partial A_y}{\partial y}+\frac{\partial A_z}{\partial z}\bigg)+\cdots\\ =\frac{\partial A_x}{\partial^2 x}\vec e_x+\bigg(\frac{\partial A_y}{\partial y\partial x}+\frac{\partial A_z}{\partial z\partial x}\bigg)\vec e_x+\cdots (A )=(xAx+yAy+zAz)=(xe x)(xAx+yAy+zAz)+=2xAxe x+(yxAy+zxAz)e x+

▽ 2 A ⃗ = ▽ 2 A x e ⃗ x + ▽ 2 A y e ⃗ y + ▽ 2 A z e ⃗ z = ( ∂ 2 A x ∂ x 2 + ∂ 2 A x ∂ y 2 + ∂ 2 A x ∂ z 2 ) e ⃗ x + ( ∂ 2 A y ∂ x 2 + ∂ 2 A y ∂ y 2 + ∂ 2 A y ∂ z 2 ) e ⃗ y + ( ∂ 2 A z ∂ x 2 + ∂ 2 A z ∂ y 2 + ∂ 2 A z ∂ z 2 ) e ⃗ z \triangledown^2\vec A=\triangledown^2A_x\vec e_x+\triangledown^2A_y\vec e_y+\triangledown^2A_z\vec e_z\\ =\bigg(\frac{\partial^2A_x }{\partial x^2}+\frac{\partial^2A_x }{\partial y^2}+\frac{\partial^2A_x }{\partial z^2}\bigg)\vec e_x\\ +\bigg(\frac{\partial^2A_y }{\partial x^2}+\frac{\partial^2A_y }{\partial y^2}+\frac{\partial^2A_y }{\partial z^2}\bigg)\vec e_y\\ +\bigg(\frac{\partial^2A_z }{\partial x^2}+\frac{\partial^2A_z }{\partial y^2}+\frac{\partial^2A_z }{\partial z^2}\bigg)\vec e_z 2A =2Axe x+2Aye y+2Aze z=(x22Ax+y22Ax+z22Ax)e x+(x22Ay+y22Ay+z22Ay)e y+(x22Az+y22Az+z22Az)e z
▽ ( ▽ ⋅ A ⃗ ) − ▽ 2 A ⃗ = ∂ A x ∂ 2 x e ⃗ x + ( ∂ A y ∂ y ∂ x + ∂ A z ∂ z ∂ x ) e ⃗ x − ( ∂ 2 A x ∂ x 2 + ∂ 2 A x ∂ y 2 + ∂ 2 A x ∂ z 2 ) e ⃗ x + ⋯ = ( ∂ A y ∂ y ∂ x + ∂ A z ∂ z ∂ x ) e ⃗ x − ( ∂ 2 A x ∂ y 2 + ∂ 2 A x ∂ z 2 ) e ⃗ x + ⋯ \triangledown(\triangledown\cdot\vec A)-\triangledown^2\vec A\\ =\frac{\partial A_x}{\partial^2 x}\vec e_x+\bigg(\frac{\partial A_y}{\partial y\partial x}+\frac{\partial A_z}{\partial z\partial x}\bigg)\vec e_x-\bigg(\frac{\partial^2A_x }{\partial x^2}+\frac{\partial^2A_x }{\partial y^2}+\frac{\partial^2A_x }{\partial z^2}\bigg)\vec e_x+\cdots\\ =\bigg(\frac{\partial A_y}{\partial y\partial x}+\frac{\partial A_z}{\partial z\partial x}\bigg)\vec e_x-\bigg(\frac{\partial^2A_x }{\partial y^2}+\frac{\partial^2A_x }{\partial z^2}\bigg)\vec e_x+\cdots (A )2A =2xAxe x+(yxAy+zxAz)e x(x22Ax+y22Ax+z22Ax)e x+=(yxAy+zxAz)e x(y22Ax+z22Ax)e x+

  • 其它三项均可证得,证毕
  • 19
    点赞
  • 93
    收藏
    觉得还不错? 一键收藏
  • 3
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值