1.中值滤波
2.双边滤波
#中值滤波
统计排序滤波器
中值对椒盐噪声有很好的抑制作用
中值滤波的意思是绿色框框区域内的像素点的值,从小到大排序,去中间的值给正中间的值,也就是用124替换150,最大值和最小值滤波也是同样的道理,用最大值或者最小值替换中间的值!
#双边滤波
均值模糊无法克服边缘像素信息丢失缺陷,原因是均值滤波是基于平均权重
高斯模糊部分克服了该缺陷,但是无法完全避免,应为没有考虑像素值的不同
高斯双边模糊-是边缘保留的滤波方法,避免了边缘信息丢失,保留了图像轮廓不变
API:
中值模糊medianBlur(Mat src,Mat dest,ksize)ksize卷积和大小 奇数
双边模糊bilateraFilter(src,dest,d=15,150,3)
(15-计算的半径,半径之内的像素都会被纳入计算,如果提供-1,则根据sigma space参数取值
150-sigma space 如果d的值大于0则声明无效,否则根据它来计算d值
3-sigma space如果d的值大于0则声明无效,否则根据它来计算d中模糊的ksize大小必须是大于1而且必须是奇数)
#include <opencv2/opencv.hpp>
#include <iostream>
#include <math.h>
using namespace cv;
using namespace std;
int main(int argc, char** ragv) {
Mat src, dst;
src = imread("F:/识图/645-140GG51056.JPG");
if (src.empty())
{
cout << "could not image!" << endl;
return -1;
}
namedWindow("原图", CV_WINDOW_AUTOSIZE);
imshow("原图", src);
Mat gm;
//中值滤波
medianBlur(src, gm, 3);
imshow("中值滤波", gm);
//双边滤波
bilateralFilter(src, dst, 15, 100, 3);
namedWindow("双边滤波", CV_WINDOW_AUTOSIZE);
imshow("双边滤波", dst);
Mat kernel = (Mat_<int>(3,3)<<0,-1,0,-1,5,-1,0,-1,0);
Mat result;
//高斯模糊
filter2D(dst, result, -1, kernel);
imshow("双边+对比度提升", result);
GaussianBlur(src, dst, Size(15, 15), 3, 3);
imshow("高斯模糊", dst);
waitKey(0);
return 0;
}
效果:
双边模糊表示边缘的信息更多的保留下来了