OpenCV学习第十篇:图像模糊二

1.中值滤波
2.双边滤波

#中值滤波
统计排序滤波器
中值对椒盐噪声有很好的抑制作用
这里写图片描述
中值滤波的意思是绿色框框区域内的像素点的值,从小到大排序,去中间的值给正中间的值,也就是用124替换150,最大值和最小值滤波也是同样的道理,用最大值或者最小值替换中间的值!
#双边滤波
均值模糊无法克服边缘像素信息丢失缺陷,原因是均值滤波是基于平均权重
高斯模糊部分克服了该缺陷,但是无法完全避免,应为没有考虑像素值的不同
高斯双边模糊-是边缘保留的滤波方法,避免了边缘信息丢失,保留了图像轮廓不变
API:
中值模糊medianBlur(Mat src,Mat dest,ksize)ksize卷积和大小 奇数
双边模糊bilateraFilter(src,dest,d=15,150,3)
(15-计算的半径,半径之内的像素都会被纳入计算,如果提供-1,则根据sigma space参数取值
150-sigma space 如果d的值大于0则声明无效,否则根据它来计算d值
3-sigma space如果d的值大于0则声明无效,否则根据它来计算d中模糊的ksize大小必须是大于1而且必须是奇数)

#include <opencv2/opencv.hpp>
#include <iostream>
#include <math.h>

using namespace cv;
using namespace std;
int main(int argc, char** ragv) {
	Mat src, dst;
	src = imread("F:/识图/645-140GG51056.JPG");
	if (src.empty())
	{
		cout << "could not image!" << endl;
		return -1;
	}
	namedWindow("原图", CV_WINDOW_AUTOSIZE);
	imshow("原图", src);
	Mat gm;
	//中值滤波
	medianBlur(src, gm, 3);
	imshow("中值滤波", gm);
	//双边滤波
	bilateralFilter(src, dst, 15, 100, 3);
	namedWindow("双边滤波", CV_WINDOW_AUTOSIZE);
	imshow("双边滤波", dst);
	Mat kernel = (Mat_<int>(3,3)<<0,-1,0,-1,5,-1,0,-1,0);
	Mat result;
	//高斯模糊
	filter2D(dst, result, -1, kernel);
	imshow("双边+对比度提升", result);

	GaussianBlur(src, dst, Size(15, 15), 3, 3);
	imshow("高斯模糊", dst);

	waitKey(0);
	return 0;
}

效果:
这里写图片描述
这里写图片描述
这里写图片描述
这里写图片描述
这里写图片描述
双边模糊表示边缘的信息更多的保留下来了

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值