OpenCV学习第十五篇:基本阈值操作

图像阈值(threshold):

 

阈值是什么?简单点说就是图像分割的标尺,这个标尺是根据什么产生的,阈值产生算法?阈值类型(Binary

segmentation)

阈值类型----阈值二阈值化(threshold binary)

左下方的图表示图像像素点Src(x,y)值分布情况,蓝色水平线表示阈值

阈值类型----阈值反二值化(threshold binary Inverted)

左下方的图表示图像像素点Src(x,y)值分布情况,蓝色水平线表示阈值

阈值类型----截断

左下方的图表示图像像素点Src(x,y)值分布情况,蓝色水平线表示阈值

阈值类型----阈值取零(threshold to zero)

左下方的图表示图像像素点Src(x,y)值分布情况,蓝色水平线表示阈值

阈值类型----阈值反去零(threshold to zero inverted)

左下方的图表示图像像素点Src(x,y)值分布情况,蓝色水平线表示阈值

#include <opencv2/opencv.hpp>
#include <iostream>
#include <math.h>

using namespace cv;
using namespace std;

int threshold_Value = 127;
int threshold_max = 255;
void Threshold_Demo(int, void*);
Mat src, gray_src,dst;
const char* output_title = "binary image";
int type_max = 5;
int type_value = 2;

int main(int argc, char** argv) {
	src = imread("F:/picture/645-140GG51056.jpg");
	if (src.empty()) {
		printf("src is empty!");
	}
	namedWindow(output_title, CV_WINDOW_AUTOSIZE);
	//显示滑动条,并且设置最大值和最小值
	createTrackbar("Threshold Value:", output_title, &threshold_Value, threshold_max, Threshold_Demo);
	//设置阈值化类型
	createTrackbar("Bary Value:", output_title, &type_value, type_max, Threshold_Demo);
	Threshold_Demo(0, 0);
	waitKey(0);
	return 0;
}

//阈值化
void Threshold_Demo(int, void*) {
	cvtColor(src, gray_src, CV_BGR2GRAY);
	threshold(gray_src, dst, threshold_Value, threshold_max, type_value);
	imshow(output_title, dst);
}

效果:


 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值