图像阈值(threshold):
阈值是什么?简单点说就是图像分割的标尺,这个标尺是根据什么产生的,阈值产生算法?阈值类型(Binary
segmentation)
阈值类型----阈值二阈值化(threshold binary)
左下方的图表示图像像素点Src(x,y)值分布情况,蓝色水平线表示阈值
阈值类型----阈值反二值化(threshold binary Inverted)
左下方的图表示图像像素点Src(x,y)值分布情况,蓝色水平线表示阈值
阈值类型----截断
左下方的图表示图像像素点Src(x,y)值分布情况,蓝色水平线表示阈值
阈值类型----阈值取零(threshold to zero)
左下方的图表示图像像素点Src(x,y)值分布情况,蓝色水平线表示阈值
阈值类型----阈值反去零(threshold to zero inverted)
左下方的图表示图像像素点Src(x,y)值分布情况,蓝色水平线表示阈值
#include <opencv2/opencv.hpp>
#include <iostream>
#include <math.h>
using namespace cv;
using namespace std;
int threshold_Value = 127;
int threshold_max = 255;
void Threshold_Demo(int, void*);
Mat src, gray_src,dst;
const char* output_title = "binary image";
int type_max = 5;
int type_value = 2;
int main(int argc, char** argv) {
src = imread("F:/picture/645-140GG51056.jpg");
if (src.empty()) {
printf("src is empty!");
}
namedWindow(output_title, CV_WINDOW_AUTOSIZE);
//显示滑动条,并且设置最大值和最小值
createTrackbar("Threshold Value:", output_title, &threshold_Value, threshold_max, Threshold_Demo);
//设置阈值化类型
createTrackbar("Bary Value:", output_title, &type_value, type_max, Threshold_Demo);
Threshold_Demo(0, 0);
waitKey(0);
return 0;
}
//阈值化
void Threshold_Demo(int, void*) {
cvtColor(src, gray_src, CV_BGR2GRAY);
threshold(gray_src, dst, threshold_Value, threshold_max, type_value);
imshow(output_title, dst);
}
效果: