【路径规划】基于粒子群算法的三维无人机路径规划(山区地形)【Matlab代码#82】


【可更换其他算法,获取资源请见文章第5节:资源获取】


1. 粒子群算法PSO

此处介绍略去。

2. 无人机路径规划

无人机路径规划问题是指在给定环境中,根据一定的约束条件和目标,确定无人机从起始位置到目标位置的最佳路径。这个问题通常涉及到避开障碍物、最小化路径长度、优化时间等因素。

无人机路径规划问题是一个经典的计算机科学问题,在无人机、机器人和自动驾驶等领域具有重要应用。它涉及到多个关键方面:

  • 环境建模:需要对无人机飞行的环境进行建模,包括地图、障碍物、边界限制等。这可以通过传感器、地图数据或者虚拟模拟进行获取。
  • 目标定义:需要明确无人机的起始位置和目标位置。起始位置是无人机的当前位置,目标位置是无人机需要到达的位置。
  • 约束条件:在路径规划过程中,需要考虑多种约束条件,例如无人机的最大飞行速度、最小转弯半径、避障要求等。
  • 路径搜索算法:路径搜索算法是解决无人机路径规划问题的关键。常见的算法包括启发式搜索算法(如A*算法)、遗传算法、蚁群算法等。这些算法通过在环境中搜索最佳路径,考虑约束条件和目标来得出最优解。
  • 动态规划:在某些情况下,无人机路径规划问题可以转化为动态规划问题,通过计算路径的最短或最优子结构来确定最佳路径。
  • 实时规划:对于需要实时响应和动态环境变化的应用,路径规划算法需要能够快速更新路径并适应新的条件和约束。

无人机路径规划问题的目标是找到一条安全、高效的路径,以达到指定的目标位置。这需要综合考虑飞行效率、避障能力、航行安全和路径规划算法的效率等因素。

路径规划能力是无人机械完成各项规定任务的基本能力,而对于无人机而言,其三维航迹规划得合理与否,直接决定了无人机能否完成规定的任务,而航迹规划算法,又直接影响着航迹规划的质量。因此,进行无人机三维航迹规划算法的研究,对于提高无人机的任务完成率具有重要的意义。

近年来,针对无人机航迹规划问题的研究主要分为两类,一类是基于数学计算的航迹规划方法,另一类是基于智能仿生算法的航迹规划方法。其中,智能仿生算法在求解复杂、多约束条件下的无人机航迹规划问题时,具有较快的运算速度和较强的适用性,故受到了很对学者的青睐。

3. 部分代码展示

%  障碍物 位置坐标及半径
model.Barrier =  [10,60 , 5;
    40, 50,6
    60, 50 , 5
    100, 30,  8 ] ;
model.Num_Barrier  =  size(model.Barrier , 1 ); %  障碍物的数目

model.weight1 = 0.5; % 权重1 飞行线路长度权重
model.weight2 = 0.3; % 权重2  飞行高度相关权重
model.weight3 = 0.2; % 权重3  Jsmooth  指标权重
 
%%  算法参数设置
param.nPop =   30; % 种群规模
param.MaxIt =  200; % 最大迭代次数
param.GradIt =  15; % 划分等级的迭代次数

param.rPercent = 0.2; 
% param.hPercent = 0.7;  %  
% param.mPercent = 0.5;  % 


param.ShowIteration = 50; % 每过多少次迭代显示一次图
%%  运行算法
CostFunction = @(x) MyCost(x,model);    %   设置目标函数

4. 仿真图展示

在这里插入图片描述
在这里插入图片描述

5. 资源获取

可以获取完整代码资源。👇👇👇👀名片

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

天`南

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值