【可更换其他算法,获取资源
请见文章第5节:资源获取】
1. 粒子群算法PSO
此处介绍略去。
2. 无人机路径规划
无人机路径规划问题是指在给定环境中,根据一定的约束条件和目标,确定无人机从起始位置到目标位置的最佳路径。这个问题通常涉及到避开障碍物、最小化路径长度、优化时间等因素。
无人机路径规划问题是一个经典的计算机科学问题,在无人机、机器人和自动驾驶等领域具有重要应用。它涉及到多个关键方面:
- 环境建模:需要对无人机飞行的环境进行建模,包括地图、障碍物、边界限制等。这可以通过传感器、地图数据或者虚拟模拟进行获取。
- 目标定义:需要明确无人机的起始位置和目标位置。起始位置是无人机的当前位置,目标位置是无人机需要到达的位置。
- 约束条件:在路径规划过程中,需要考虑多种约束条件,例如无人机的最大飞行速度、最小转弯半径、避障要求等。
- 路径搜索算法:路径搜索算法是解决无人机路径规划问题的关键。常见的算法包括启发式搜索算法(如A*算法)、遗传算法、蚁群算法等。这些算法通过在环境中搜索最佳路径,考虑约束条件和目标来得出最优解。
- 动态规划:在某些情况下,无人机路径规划问题可以转化为动态规划问题,通过计算路径的最短或最优子结构来确定最佳路径。
- 实时规划:对于需要实时响应和动态环境变化的应用,路径规划算法需要能够快速更新路径并适应新的条件和约束。
无人机路径规划问题的目标是找到一条安全、高效的路径,以达到指定的目标位置。这需要综合考虑飞行效率、避障能力、航行安全和路径规划算法的效率等因素。
路径规划能力是无人机械完成各项规定任务的基本能力,而对于无人机而言,其三维航迹规划得合理与否,直接决定了无人机能否完成规定的任务,而航迹规划算法,又直接影响着航迹规划的质量。因此,进行无人机三维航迹规划算法的研究,对于提高无人机的任务完成率具有重要的意义。
近年来,针对无人机航迹规划问题的研究主要分为两类,一类是基于数学计算的航迹规划方法,另一类是基于智能仿生算法的航迹规划方法。其中,智能仿生算法在求解复杂、多约束条件下的无人机航迹规划问题时,具有较快的运算速度和较强的适用性,故受到了很对学者的青睐。
3. 部分代码展示
% 障碍物 位置坐标及半径
model.Barrier = [10,60 , 5;
40, 50,6
60, 50 , 5
100, 30, 8 ] ;
model.Num_Barrier = size(model.Barrier , 1 ); % 障碍物的数目
model.weight1 = 0.5; % 权重1 飞行线路长度权重
model.weight2 = 0.3; % 权重2 飞行高度相关权重
model.weight3 = 0.2; % 权重3 Jsmooth 指标权重
%% 算法参数设置
param.nPop = 30; % 种群规模
param.MaxIt = 200; % 最大迭代次数
param.GradIt = 15; % 划分等级的迭代次数
param.rPercent = 0.2;
% param.hPercent = 0.7; %
% param.mPercent = 0.5; %
param.ShowIteration = 50; % 每过多少次迭代显示一次图
%% 运行算法
CostFunction = @(x) MyCost(x,model); % 设置目标函数
4. 仿真图展示
5. 资源获取
可以获取完整代码资源。👇👇👇👀名片