做相关性分析时,如何排除奇异值Outliers,以增加相关分析的准确性

48 篇文章 38 订阅 ¥29.90 ¥99.00
36 篇文章 69 订阅 ¥29.90 ¥99.00
为了提高相关性分析的准确性,本文介绍了通过计算马氏距离识别并排除异常值(奇异值)的方法。Rousselet 和 Pernet (2012)指出异常值可能扭曲Pearson相关性,但他们的方法存在争议。文章推荐使用ScatterOutliers主函数,结合Shepherd's pi相关性来更稳健地处理异常值,以避免统计错误和灵敏度降低的问题。
摘要由CSDN通过智能技术生成

如下图所示,如何排序奇异值,以提高性两者之间的相关性。在这里插入图片描述
思想: 为了提高相关性分析,我们通过从双变量平均值中为每个观察值求马氏距离来识别异常值,并排除平均 马氏距离 为 6 或更大的所有点。

代码下载地址:做相关性分析时,如何排除奇异值Outliers,以增加相关分析的准确性

在这里插入图片描述
Rousselet 和 Pernet (2012) 证明异常值可以扭曲 Pearson 相关性。他们声称,通过选择和重新分析一组已发表的研究,这会导致广泛的统计错误。然而,他们既没有报告这项调查的研究身份,也没有报告纳入标准,因此他们的主张不能独立复制。此外,由于他们的选择标准是基于作者认为一项研究使用了误导性统计数据的信念,因此他们的研究代表了“双重浸渍”的一个例子(Kriegeskorte 等人,2009 年

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

sta@ma@brain

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值