如下图所示,如何排序奇异值,以提高性两者之间的相关性。
思想: 为了提高相关性分析,我们通过从双变量平均值中为每个观察值求马氏距离来识别异常值,并排除平均 马氏距离 为 6 或更大的所有点。
代码下载地址:做相关性分析时,如何排除奇异值Outliers,以增加相关分析的准确性
Rousselet 和 Pernet (2012) 证明异常值可以扭曲 Pearson 相关性。他们声称,通过选择和重新分析一组已发表的研究,这会导致广泛的统计错误。然而,他们既没有报告这项调查的研究身份,也没有报告纳入标准,因此他们的主张不能独立复制。此外,由于他们的选择标准是基于作者认为一项研究使用了误导性统计数据的信念,因此他们的研究代表了“双重浸渍”的一个例子(Kriegeskorte 等人,2009 年