从KL散度到MLE

这篇博客通过MIT 18.650 statistics for applications 的Lecture 4介绍了最大似然估计(MLE)的一种新颖理解方式。不同于常规直接给出MLE公式,作者通过最大范数距离到KL散度来解释MLE,指出在无法直接构造目标表达式且未知最优参数时,利用KL散度作为度量标准。由于KL散度在等于0时意味着两个分布相等,因此求解KL散度最小化的参数即为MLE。内容中还提到了信息熵和交叉熵的概念,说明最小化交叉熵等同于求解MLE。
摘要由CSDN通过智能技术生成

MIT的课程 18.650 statistics for applications
在Lecture 4 讲MLE的时候,和一般书本上来就给出MLE公式的方法不同,这里使用Max variant distance -> KLdivergence ->MLE的方式,初看到这个过程,内心感觉还是比较有意思的,简单记录如下

假设我们要估算某个分布P的参数 θ θ ∗ ,记为 θ^ θ ^ ,我们希望分布 Pθ P θ ∗ Pθ^ P θ ^ 越接近越好。怎么衡量呢,使用total variant distance,

TV(Pθ,Pθ^)=maxA|Pθ(A)Pθ^(A)| T V ( P θ ∗ , P θ ^ ) = max A | P θ
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值