OpenCV匹配demo中使用基础矩阵F过滤误匹配的例子

本文介绍了如何在OpenCV的匹配示例中利用基础矩阵F来过滤误匹配。虽然可以使用H矩阵进行平面处理,但这里仅展示了如何使用F矩阵来划定匹配范围,未实现H矩阵的过滤功能。匹配过程中,minHessian参数用于筛选特征点,其值越高,特征点质量越好,但数量会减少。
摘要由CSDN通过智能技术生成

OpenCV中有很多例子,其中匹配的示例也有几个,但是没有找到利用几何对匹配结果进行过滤的示例,因此在其中的一个demo中添加了几行代码,使用基础矩阵对错误匹配进行删除,当然对于平面也可以采用H矩阵处理,这里只用H矩阵框出了范围,没有过滤实现。在sufr中minHessian是一个阈值,起到对特征点的一个过滤作用,minHessian值越高,得到的关键点越少,但是关键点也就跟好。完整代码如下:

#include <iostream>
#include "opencv2/core.hpp"
#ifdef HAVE_OPENCV_XFEATURES2D
#include "opencv2/calib3d.hpp"
#include "opencv2/highgui.hpp"
#include "opencv2/imgproc.hpp"
#include "opencv2/features2d.hpp"
#include "opencv2/xfeatures2d.hpp"


using namespace cv;
using namespace cv::xfeatures2d;
using std::cout;
using std::endl;


int main( int argc, char* argv[] )
{

	Mat img_object = imread("../data/box.png", IMREAD_GRAYSCALE);
	Mat img_scene = imread("../data/box_in_scene.png", IMREAD_GRAYSCALE);

    //-- Step 1: Detect the keypoints using SURF Detector, compute the descriptors
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值