相机畸变改正Brown模型

本文详细介绍了在摄影测量和计算机视觉领域中,如何使用Brown模型进行相机畸变改正。通过正向和逆向过程的解析,阐述了从畸变坐标到无畸变坐标的转换,涉及关键参数如主点偏移、焦距和畸变系数,并提供了openCV和openMVG的实现示例。
摘要由CSDN通过智能技术生成

    在摄影测量和计算机视觉中都需要对含有畸变的影像进行改正操作,常用到的模型是对透视影像改正的Brown模型,在很多资料和软件中都可以看到该模型的畸变改正公式,比如PhotoScan和Context Capture中,在很多开源库中也有该畸变的改正函数,比如openCV和openMVG。虽然可以通过简单的函数调用便可以实现对影像的畸变改正,但是原理部分总会觉得有点不踏实,本文用于梳理Brown模型畸变改正的流程。

1、畸变的正向过程

在书中和软件说明书中为了方便读者理解畸变的过程,常常表示的是物体透视成像后畸变生成的过程,即从物方三维点坐标到图像点。三维点(X,Y,Z)通过透视成像得到像点坐标(x,y),由于镜头存在畸变,所以会出现像点坐标(x,y)与图像坐标(u,v)不一致的情况,这时就需要进行畸变变换才能得到真实的图像坐标,(u,v)表示的是发生畸变的真实的图像坐标。这样描述虽然容易理解畸变发生的过程,但是不利于畸变改正过程的理解,畸变改正的过程也不会涉及到物方三维点。

x = X / Z

y = Y / Z

r = x*x + y*y;

x1 &#

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值