Python、Anaconda、Pandas以及PyCharm的安装
文章来源:企鹅号 - Michael的笔记本,我已经按照博主方法安装成功,步骤非常详细,给博主点赞,给大家提供参考啦~
开发环境的搭建是一件入门比较头疼的事情,在上期的文稿基础上,增加一项Anaconda的安装介绍。Anaconda是Python的一个发行版本,安装好了Anaconda就相当于安装好了Python,并且里面还集成了很多Python科学计算的第三方库。比如我们需要用到的Pandas、numpy、dateutil等等,高达几百种。因此,安装了Anaconda,就不需要再专门的一个个安装第三方库。只要在使用Pycharm时调用Anaconda环境,便可以方便的使用其中的各种库。且各个库之间的依赖性很好,对于我们来讲可以大大简化安装流程。
其实在Windows下安装Python、Anaconda和pandas都比较简单,Python只需要去Python的网站下载下来安装包,然后下一步下一步这么点下去就好了,而pandas呢只要安装Pycharm这个工程软件,就可以了。这里简单介绍一下pandas,pandas是Python下面的一个package,专门用于金融数据的分析,是非常好用的金融分析工具,深入学习pandas,你就知道pandas简直就是为金融分析而量身定做,下边网页是pandas的简单入门介绍http://pandas.pydata.org/pandas-docs/stable/10min.html
下面主要介绍的内容:
1.Python的安装
2.Pycharm的安装、创建、运行Python程序
3.pandas的安装
4.补充Anaconda的安装
*这里因为写作时间的原因,才写成了这个顺序,正确的安装顺序请调整为1→4→2(如果装了第4步,就应该不需要看第3步)。
1.Python安装
从Python官网( https://www.python.org )下载windows版本的Python,目前最新的版本是Python3.7。安装文件下载好之后,就像一般的软件一样,一直点击“下一步”就好了。
2.Pycharm的安装、创建、运行Python程序
Pycharm是一个IDE(集成开发环境),就是一个用来编写Python程序的软件,它可以方便的用来管理Python工程,可以让我们更加方便的编写Python程序,而安装pandas用它也是最方便的途径。Pycharm有收费版(Full-fledged Professional)和免费版(Free Community),目前用免费版本就已经可以满足日常需求。可以去官网( https://www.jetbrains.com/pycharm )下载,目前最新版本是2018.2.4。
下载好之后一路点击next就能安装好。
安装好Python和Pycharm之后,打开pycharm,点击创建一个新project:
然后给project取名字:
这里需要在框中填写一个路径地址,每当我们新建一个Python项目,一般是创建个新的空文件夹,把和这个项目相关的程序、数据等内容都放在这个文件夹中。框中的路径就是指向这个文件夹。我这里这个文件夹取名test,填写好之后点击“create”,出现下面这个画面:
顺序点击File→New→Python File,填写文件名,创建了一个Python程序文件,双击打开:
一般开始一门语言,都从输出Hello World!开始,这里我们输入一行简单的代码 print( 'Hello World!'),之后右键,选择Run‘test’,就可以运行程序,并且查看输出了,结果如下图:
这就是一个简单的Python程序。
)
3.安装pandas
pandas是Python下面的一个库,在Pycharm里非常方便安装,下面就介绍如何使用Pycharm安装pandas:
顺序点击File→Settings,然后点击Project:test→Project Interpreter,出现下面这个界面,如果下边没有pandas,就选择右边的+号:
弹出以下页面:
在搜索框中搜索pandas,点击Install Package,等待安装完成即可,如下图:
之后可以按照同样的流程安装其他一些pandas协同的package,比如:numpy,dateutil等。
安装好之后运行下面这个程序,如果没有报错,就说明完全安装好pandas了。如果报错,一般是因为缺少一些必要的package,按照上述方法继续安装就可以了。
4.补充Anaconda的安装
直接Anaconda的官网页面找到下载界面如下:
根据自身电脑情况选择对应的版本下载,完成后基本上按提示一步一步来就是了,中间有一步如下图:
这里我是全部勾选的,接下来的都全部按提示一直“下一步”就好了。
在最后安装完成之后,我们在PyCharm里设置一下解释器(Interpreter)就选择Anaconda目录下的Python程序就可以了,这样,你就可以看到很多常用的package其实就已经打包安装好了。
(完)