大家还在抱怨FLUX模型的生态支持慢吗?终于支持FLUX模型的ControlNet-Inpainting来了。Alimama Creative团队的研究人员发布的FLUX.1-dev模型提供了Inpainting ControlNet检查点。ComfyUI 现在也已经支持Flux-ControlNet-Inpainting 的推理。工作流程可以从本文链接下载。目前开放的知识训练过程中的alpha版本,即将发布更新版本。当然这也不影响我们去使用。ok,我们先来模型推理的效果~
相关链接
模型下载:https://huggingface.co/alimama-creative/FLUX.1-dev-Controlnet-Inpainting-Alpha
ComfyUI工作流下载:https://huggingface.co/alimama-creative/FLUX.1-dev-Controlnet-Inpainting-Alpha/resolve/main/images/alimama-flux-controlnet-inpaint.json
ComfyUI使用提示:
-
使用t5xxl-FP16和flux1-dev-fp8模型进行28步推理,GPU显存占用为27GB。使用时的推理时间cfg=3.5为 27 秒,不使用时的推理时间cfg=1为 15 秒。Hyper-FLUX-lora可用于加速推理。
-
control-strength您可以尝试调整(降低)参数control-end-percent,cfg以达到更好的效果。
以下示例使用control-strength= 0.9 & control-end-percent= 1.0 & cfg= 3.5
模型介绍
-
该模型在 12M laion2B 和分辨率为 768x768 的内部源图像上进行训练。推理在此大小下表现最佳,而其他大小则产生次优结果。
-
建议的 controlnet_conditioning_scale 为 0.9 - 0.95。
注意:这只是训练过程中的alpha版本,即将发布更新版本。
效果演示
与 SDXL-Inpainting 的比较
与SDXL-Inpainting相比,从左到右分别为输入图像 | 蒙版图像 | SDXL 修复 | 本文方法。
与Diffusers一起使用
步骤1:安装扩散器
pip install diffusers==0.30.2
步骤2:从github克隆repo
git clone https://github.com/alimama-creative/FLUX-Controlnet-Inpainting.git
步骤3:修改image_path、mask_path,提示并运行.
python main.py