千呼万唤始出来!FLUX-ControlNet-Inpainting模型终于来了,由阿里妈妈开源,文中附模型和ComfyUI工作流下载!

大家还在抱怨FLUX模型的生态支持慢吗?终于支持FLUX模型的ControlNet-Inpainting来了。Alimama Creative团队的研究人员发布的FLUX.1-dev模型提供了Inpainting ControlNet检查点。ComfyUI 现在也已经支持Flux-ControlNet-Inpainting 的推理。工作流程可以从本文链接下载。目前开放的知识训练过程中的alpha版本,即将发布更新版本。当然这也不影响我们去使用。ok,我们先来模型推理的效果~

相关链接

模型下载:https://huggingface.co/alimama-creative/FLUX.1-dev-Controlnet-Inpainting-Alpha

ComfyUI工作流下载:https://huggingface.co/alimama-creative/FLUX.1-dev-Controlnet-Inpainting-Alpha/resolve/main/images/alimama-flux-controlnet-inpaint.json

ComfyUI使用提示:

  • 使用t5xxl-FP16和flux1-dev-fp8模型进行28步推理,GPU显存占用为27GB。使用时的推理时间cfg=3.5为 27 秒,不使用时的推理时间cfg=1为 15 秒。Hyper-FLUX-lora可用于加速推理。

  • control-strength您可以尝试调整(降低)参数control-end-percent,cfg以达到更好的效果。

以下示例使用control-strength= 0.9 & control-end-percent= 1.0 & cfg= 3.5

模型介绍

  • 该模型在 12M laion2B 和分辨率为 768x768 的内部源图像上进行训练。推理在此大小下表现最佳,而其他大小则产生次优结果。

  • 建议的 controlnet_conditioning_scale 为 0.9 - 0.95。

注意:这只是训练过程中的alpha版本,即将发布更新版本。

效果演示

与 SDXL-Inpainting 的比较

与SDXL-Inpainting相比,从左到右分别为输入图像 | 蒙版图像 | SDXL 修复 | 本文方法。

与Diffusers一起使用

步骤1:安装扩散器

pip install diffusers==0.30.2

步骤2:从github克隆repo

git clone https://github.com/alimama-creative/FLUX-Controlnet-Inpainting.git 步骤3:修改image_path、mask_path,提示并运行.

python main.py

### 如何使用 ComfyUI Flux 进行照片修复 #### 准备工作 为了能够顺利地使用 ComfyUI 其内置的 Flux 模型进行照片修复,确保已经安装并配置好了最新的 ComfyUI 版本。ComfyUI 支持阿里妈妈 FLUX-Controlnet-Inpainting 局部修复模型,这使得复杂的照片编辑变得更加简单高效[^1]。 #### 创建项目环境 启动 ComfyUI 应用程序之后,在界面中创建一个新的工作流文件夹来保存即将使用的素材以及设置参数。通过这种方式保持项目的整洁有序有助于后续的操作调整。 #### 导入待修复图片 将需要修复的照片导入到软件的工作区里。可以通过拖拽的方式快速加载本地存储中的图像文件至指定区域;也可以点击界面上相应的按钮浏览选择要处理的目标图片。 #### 设置控制网络(ControlNet) 对于背景替换或其他类型的高级修改任务来说,利用 ControlNet 可以极大地简化流程并提高精度。按照官方文档说明正确配置好该插件后,便可以在不改变主体特征的前提下轻松更改周围环境或移除不需要的部分[^2]。 #### 执行修复操作 当一切准备就绪以后就可以开实际的修补过程了。选定想要修正的具体位置,并标记出哪些地方应该被保留而哪些则需消除重绘。借助于 FLUX 的强大功能,即使是对细枝末节之处也能做到精准把控,从而获得高质量的结果输出[^3]。 #### 预览与导出成果 完成上述步骤之后不要忘记仔细检查最终效果是否满意。如果有必要的话还可以进一步微调直至达到理想状态为止。最后一步就是把经过精心修饰后的成品另存为新的文件格式以便分享给他人欣赏或是用于其他目的。 ```python # Python 示例代码片段展示如何集成ComfyUI API接口实现自动化批量处理多张图片的功能 import comfyui_api as api def batch_process_images(image_folder_path, output_folder_path): images = os.listdir(image_folder_path) for img_name in images: image_path = os.path.join(image_folder_path, img_name) result_image = api.process_with_flux(image_path=image_path, control_net_enabled=True, inpainting_model="FLUX-Controlnet-Inpainting") save_path = os.path.join(output_folder_path, f"processed_{img_name}") result_image.save(save_path) if __name__ == "__main__": input_dir = "./input_photos" output_dir = "./output_results" if not os.path.exists(output_dir): os.makedirs(output_dir) batch_process_images(input_dir, output_dir) ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AIGC Studio

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值