Training a Model

After configuring your neural, you will have to train the model. The simplest case is to simply call the .fit() method on the model configuration with your DataSetIterator as an argument. This will train the model on all of your data once. A single pass over the entire dataset is called an epoch. DL4J has several different methods for passing through the data more than just once.

The simplest way, is to reset your DataSetIterator and loop over the fit call as many times as you want. This way you can train your model for as many epochs as you think is a good fit.

Yet another way would be to use an EarlyStoppingTrainer. You can configure this trainer to run for as many epochs as you like and additionally for as long as you like. It will evaluate the performance of your network after each epoch (or what ever you have configured) and save the best performing version for later use.

Also note that DL4J does not only support training just MultiLayerNetworks, but it also supports a more flexible ComputationGraph.


发布了289 篇原创文章 · 获赞 7 · 访问量 2万+


©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客