YOLOv3网络改进(二)(未完)

参考:

https://www.zhihu.com/question/308366100

https://www.pythonheidong.com/blog/article/409533/

1、根据自己的数据集重新计算anchor值

官网或者AlexeyAB的yolov3.cfg中,都是是3个检测尺度共9个anchors,但是不同数据库的anchors值不一样,如果只用默认的anchor值,会造成检测框不精确,所以对于自训练模型来说,根据自身数据集或者网络的特征尺度的修改情况,来修改anchor值。

anchor值是使用k-means聚类算法计算所得。

通过查阅相关资料,有2种python脚本可以实现。只是我还没有运行,不知道效果。先把链接贴上。(证实后再来反馈)

https://blog.csdn.net/weixin_42880443/article/details/81953158

https://github.com/PaulChongPeng/darknet/tree/master/tools

 

https://blog.csdn.net/andeyeluguo/article/details/89230914

https://github.com/lars76/kmeans-anchor-boxes

Linux创始人Linus Torvalds有一句名言:Talk is cheap, Show me the code.(冗谈不够,放码过来!)。 代码阅读是从入门到提高的必由之路。尤其对深度学习,许多框架隐藏了神经网络底层的实现,只能在上层调包使用,对其内部原理很难认识清晰,不利于进一步优化和创新。   YOLOv3是一种基于深度学习的端到端实时目标检测方法,以速度快见长。 YOLOv3的实现Darknet是使用C语言开发的轻型开源深度学习框架,依赖少,可移植性好,可以作为很好的代码阅读案例,让我们深入探究其实现原理。   本课程将解析YOLOv3的实现原理和源码,具体内容包括:      YOLO目标检测原理       神经网络及Darknet的C语言实现,尤其是反向传播的梯度求解和误差计算       代码阅读工具及方法       深度学习计算的利器:BLAS和GEMM       GPU的CUDA编程方法及在Darknet的应用       YOLOv3的程序流程及各层的源码解析   本课程将提供注释后的Darknet的源码程序文件。   除本课程《YOLOv3目标检测:原理与源码解析》外,本人推出了有关YOLOv3目标检测的系列课程,包括:   《YOLOv3目标检测实战:训练自己的数据集》   《YOLOv3目标检测实战:交通标志识别》   《YOLOv3目标检测:原理与源码解析》   《YOLOv3目标检测:网络模型改进方法》   建议先学习课程《YOLOv3目标检测实战:训练自己的数据集》或课程《YOLOv3目标检测实战:交通标志识别》,对YOLOv3的使用方法了解以后再学习本课程。
©️2020 CSDN 皮肤主题: 精致技术 设计师:CSDN官方博客 返回首页