铁路道口交通工具检测检测系统源码分享
[一条龙教学YOLOV8标注好的数据集一键训练_70+全套改进创新点发刊_Web前端展示]
1.研究背景与意义
项目参考AAAI Association for the Advancement of Artificial Intelligence
项目来源AACV Association for the Advancement of Computer Vision
研究背景与意义
随着城市化进程的加快,交通流量的急剧增加使得交通安全问题日益突出,尤其是在铁路道口这一特殊的交通节点。铁路道口是铁路与公路交叉的地方,往往是交通事故的高发区域。根据统计数据,铁路道口事故不仅造成了人员伤亡,还对交通运输效率造成了严重影响。因此,如何有效地监测和管理铁路道口的交通流量,尤其是对各种交通工具的实时检测,成为了亟待解决的课题。
近年来,计算机视觉技术的迅猛发展为交通工具检测提供了新的解决方案。YOLO(You Only Look Once)系列模型因其高效的实时检测能力,逐渐成为物体检测领域的主流方法。YOLOv8作为该系列的最新版本,进一步提升了检测精度和速度,适用于复杂的交通场景。然而,现有的YOLOv8模型在特定应用场景下仍存在一定的局限性,尤其是在铁路道口这种具有特殊背景和多样化交通工具的环境中。因此,基于改进YOLOv8的铁路道口交通工具检测系统的研究显得尤为重要。
本研究将构建一个基于改进YOLOv8的铁路道口交通工具检测系统,旨在提高对铁路道口交通工具的检测精度和实时性。我们将使用5600张图像的数据集,涵盖了8类交通工具,包括汽车、公交车、四轮车、摩托车、SUV、拖拉机等。这些数据不仅丰富了模型的训练样本,也为其在实际应用中的泛化能力提供了保障。通过对不同交通工具的特征进行深入分析,改进YOLOv8模型的网络结构和参数设置,以适应铁路道口复杂的交通环境,从而实现高效、准确的交通工具检测。
本研究的意义不仅在于提升铁路道口的交通安全管理水平,更在于为智能交通系统的建设提供技术支持。通过实时监测和分析铁路道口的交通流量,相关部门可以及时采取措施,优化交通信号控制,减少交通拥堵,降低事故发生率。此外,研究成果还可为其他交通场景的物体检测提供借鉴,推动计算机视觉技术在交通领域的广泛应用。
综上所述,基于改进YOLOv8的铁路道口交通工具检测系统的研究,不仅具有重要的理论价值,也具备广泛的实际应用前景。通过本研究,我们希望能够为铁路道口的交通安全管理提供有效的技术手段,推动智能交通的发展,为实现安全、高效的交通环境贡献力量。
2.图片演示
注意:由于此博客编辑较早,上面“2.图片演示”和“3.视频演示”展示的系统图片或者视频可能为老版本,新版本在老版本的基础上升级如下:(实际效果以升级的新版本为准)
(1)适配了YOLOV8的“目标检测”模型和“实例分割”模型,通过加载相应的权重(.pt)文件即可自适应加载模型。
(2)支持“图片识别”、“视频识别”、“摄像头实时识别”三种识别模式。
(3)支持“图片识别”、“视频识别”、“摄像头实时识别”三种识别结果保存导出,解决手动导出(容易卡顿出现爆内存)存在的问题,识别完自动保存结果并导出到tempDir中。
(4)支持Web前端系统中的标题、背景图等自定义修改,后面提供修改教程。
另外本项目提供训练的数据集和训练教程,暂不提供权重文件(best.pt),需要您按照教程进行训练后实现图片演示和Web前端界面演示的效果。
3.视频演示
4.数据集信息展示
4.1 本项目数据集详细数据(类别数&类别名)
nc: 8
names: [‘auto’, ‘bus’, ‘car’, ‘four-wheeler’, ‘motorbike’, ‘suv’, ‘toto’, ‘tractor’]
4.2 本项目数据集信息介绍
数据集信息展示
在现代交通管理与安全监控领域,铁路道口的交通工具检测系统扮演着至关重要的角色。为提升这一系统的准确性与效率,我们构建了一个专门的数据集——“cctv-model”,旨在为改进YOLOv8模型提供丰富的训练数据。该数据集的设计充分考虑了铁路道口的交通环境,涵盖了多种常见的交通工具,确保模型在实际应用中的高效性与可靠性。
“cctv-model”数据集包含8个类别,具体类别包括:自动车(auto)、公交车(bus)、小轿车(car)、四轮车(four-wheeler)、摩托车(motorbike)、运动型多用途车(suv)、三轮车(toto)以及拖拉机(tractor)。这些类别的选择不仅反映了铁路道口周边的交通现状,也为模型的多样性与适应性提供了坚实的基础。每个类别的交通工具在外观、尺寸和行驶特性上均存在显著差异,这为模型的训练提供了丰富的样本,有助于提高其对不同交通工具的识别能力。
在数据集的构建过程中,我们通过多种途径收集了大量的图像数据,确保每个类别都有足够的样本量。这些图像来源于不同的铁路道口监控摄像头,涵盖了不同时间段和天气条件下的交通情况。这种多样性不仅增强了数据集的代表性,也为模型的泛化能力奠定了基础。为了保证数据的标注质量,我们采用了严格的标注流程,确保每张图像中的交通工具都被准确地标注,减少了误差和偏差。
在训练过程中,YOLOv8模型将利用“cctv-model”数据集中的标注信息进行学习。该模型以其高效的特征提取能力和实时检测性能,能够快速识别出图像中的交通工具,并为每个类别分配相应的置信度分数。通过不断迭代训练,模型将逐步提高对不同交通工具的识别精度,从而实现对铁路道口交通流量的实时监控与管理。
此外,为了进一步提升模型的性能,我们还计划对数据集进行增强处理,包括图像的旋转、缩放、裁剪和颜色调整等。这些数据增强技术将帮助模型在面对各种复杂场景时,依然能够保持良好的识别能力。通过这种方式,我们希望“cctv-model”不仅能够提高YOLOv8在铁路道口交通工具检测中的表现,还能为未来的智能交通系统提供有力支持。
总之,“cctv-model”数据集的构建是一个系统化的过程,旨在为铁路道口交通工具检测系统的优化提供坚实的数据基础。通过对8个交通工具类别的全面覆盖和高质量的标注,我们相信该数据集将为YOLOv8模型的训练带来显著的提升,最终实现更安全、更高效的铁路道口交通管理。
5.全套项目环境部署视频教程(零基础手把手教学)
5.2 安装Python虚拟环境创建和依赖库安装视频教程链接(零基础手把手教学)
6.手把手YOLOV8训练视频教程(零基础小白有手就能学会)
6.1 手把手YOLOV8训练视频教程(零基础小白有手就能学会)
7.70+种全套YOLOV8创新点代码加载调参视频教程(一键加载写好的改进模型的配置文件)
7.1 70+种全套YOLOV8创新点代码加载调参视频教程(一键加载写好的改进模型的配置文件)
8.70+种全套YOLOV8创新点原理讲解(非科班也可以轻松写刊发刊,V10版本正在科研待更新)
由于篇幅限制,每个创新点的具体原理讲解就不一一展开,具体见下列网址中的创新点对应子项目的技术原理博客网址【Blog】:
9.系统功能展示(检测对象为举例,实际内容以本项目数据集为准)
图9.1.系统支持检测结果表格显示
图9.2.系统支持置信度和IOU阈值手动调节
图9.3.系统支持自定义加载权重文件best.pt(需要你通过步骤5中训练获得)
图9.4.系统支持摄像头实时识别
图9.5.系统支持图片识别
图9.6.系统支持视频识别
图9.7.系统支持识别结果文件自动保存
图9.8.系统支持Excel导出检测结果数据
10.原始YOLOV8算法原理
原始YOLOv8算法原理
YOLOv8算法是目标检测领域的一次重要突破,其设计理念和实现方法体现了深度学习技术的最新进展。作为YOLO系列的最新版本,YOLOv8不仅继承了前几代算法的优点,还在多个方面进行了创新和优化,使其在精度和速度上都表现出色。该算法的核心思想在于通过高效的特征提取和融合机制,结合先进的损失计算策略,来实现对目标的精准检测。
首先,YOLOv8在骨干网络的设计上延续了跨级结构(Cross Stage Partial, CSP)的思想,但在此基础上进行了优化。具体而言,YOLOv8将YOLOv5中的C3模块替换为C2f模块,这一变化不仅减轻了模型的复杂度,还提升了特征提取的效率。C2f模块通过将特征提取过程分为卷积和连接两部分,能够更好地保持梯度流动,从而有效避免了深层网络中的梯度消失问题。这种设计使得YOLOv8在进行特征提取时,能够获得更丰富的特征信息,为后续的目标检测提供了坚实的基础。
在特征融合方面,YOLOv8采用了PAN-FPN(Path Aggregation Network - Feature Pyramid Network)结构,这一结构的设计旨在通过多尺度特征的融合,提升模型对不同尺寸目标的检测能力。PAN-FPN通过结合语义特征和定位特征,进一步增强了网络的特征融合能力,使得YOLOv8在处理复杂场景时,能够更好地捕捉到目标的细节信息。此外,YOLOv8在颈部网络中引入了SPPF(Spatial Pyramid Pooling Fast)模块,通过不同内核尺寸的池化操作,进一步提高了模型的计算速度和特征图的表达能力。
YOLOv8的检测模块采用了Anchor-Free的检测方式,这一创新使得模型在进行目标检测时,不再依赖于预定义的锚框,从而简化了模型的设计和训练过程。通过解耦头结构,YOLOv8将回归分支和预测分支进行了分离,这不仅加速了模型的收敛速度,还提高了检测的精度。解耦头结构的设计使得模型能够更灵活地处理不同类型的目标,进一步提升了检测的鲁棒性。
在损失计算策略上,YOLOv8引入了变焦损失(Focal Loss)来计算分类损失,这一策略有效地解决了类别不平衡问题,使得模型在面对难以检测的目标时,能够给予更多的关注。此外,YOLOv8还采用了数据平均保真度损失和完美交并比损失来计算边界框损失,这种多维度的损失计算方式,使得模型在边界框的回归上更加准确,从而提升了目标检测的整体性能。
YOLOv8的设计不仅关注模型的精度,还兼顾了其计算效率。通过对网络结构的轻量化设计,YOLOv8能够在保持高精度的同时,显著降低计算资源的消耗。这一特性使得YOLOv8在实际应用中,能够更好地适应各种设备的运行环境,无论是在高性能服务器上,还是在资源受限的移动设备上,YOLOv8都能提供出色的检测性能。
总的来说,YOLOv8算法通过对骨干网络、特征融合、检测模块及损失计算策略的全面优化,成功实现了高效且准确的目标检测。其在多方面的创新,不仅提升了模型的性能,也为后续的研究和应用提供了新的思路和方向。随着YOLOv8的不断发展和完善,未来在目标检测领域的应用将更加广泛,推动着智能视觉技术的进一步进步。
11.项目核心源码讲解(再也不用担心看不懂代码逻辑)
11.1 ui.py
以下是经过简化和注释的核心代码部分:
import sys
import subprocess
from QtFusion.path import abs_path
def run_script(script_path):
"""
使用当前 Python 环境运行指定的脚本。
Args:
script_path (str): 要运行的脚本路径
"""
# 获取当前 Python 解释器的路径
python_path = sys.executable
# 构建运行命令,使用 streamlit 运行指定的脚本
command = f'"{python_path}" -m streamlit run "{script_path}"'
# 执行命令并获取结果
result = subprocess.run(command, shell=True)
# 检查命令执行结果,如果返回码不为0,表示出错
if result.returncode != 0:
print("脚本运行出错。")
# 主程序入口
if __name__ == "__main__":
# 获取脚本的绝对路径
script_path = abs_path("web.py")
# 运行指定的脚本
run_script(script_path)
代码说明:
-
导入模块:
sys
:用于获取当前 Python 解释器的路径。subprocess
:用于执行外部命令。abs_path
:从QtFusion.path
模块导入的函数,用于获取文件的绝对路径。
-
run_script
函数:- 接受一个参数
script_path
,表示要运行的 Python 脚本的路径。 - 使用
sys.executable
获取当前 Python 解释器的路径。 - 构建命令字符串,使用
streamlit
模块运行指定的脚本。 - 使用
subprocess.run
执行命令,并检查返回码以判断脚本是否成功运行。
- 接受一个参数
-
主程序入口:
- 在
__main__
模块中,获取web.py
脚本的绝对路径。 - 调用
run_script
函数来运行该脚本。
- 在
这个文件是一个 Python 脚本,主要用于运行一个名为 web.py
的 Streamlit 应用。首先,文件导入了必要的模块,包括 sys
、os
和 subprocess
,这些模块提供了与系统交互的功能。特别是 subprocess
模块用于在 Python 中执行外部命令。
接下来,定义了一个名为 run_script
的函数,该函数接受一个参数 script_path
,表示要运行的脚本的路径。在函数内部,首先获取当前 Python 解释器的路径,这通过 sys.executable
实现。然后,构建一个命令字符串,该命令使用当前的 Python 解释器和 Streamlit 模块来运行指定的脚本。命令的格式是 "{python_path}" -m streamlit run "{script_path}"
,其中 python_path
是 Python 解释器的路径,script_path
是要运行的脚本路径。
接着,使用 subprocess.run
方法执行构建好的命令。这个方法会在一个新的 shell 中运行命令,并等待命令执行完成。如果命令的返回码不为 0,表示脚本运行过程中出现了错误,此时会打印出“脚本运行出错”的提示信息。
在文件的最后部分,使用 if __name__ == "__main__":
语句来确保只有在直接运行该脚本时才会执行以下代码。在这里,指定了要运行的脚本路径为 web.py
,并调用 run_script
函数来执行这个脚本。
总的来说,这个文件的主要功能是通过当前的 Python 环境来运行一个 Streamlit 应用,提供了一种简单的方式来启动和管理这个应用。
11.2 70+种YOLOv8算法改进源码大全和调试加载训练教程(非必要)\ultralytics\models\nas_init_.py
以下是代码中最核心的部分,并附上详细的中文注释:
# 导入必要的模块和类
from .model import NAS # 从当前包的model模块中导入NAS类
from .predict import NASPredictor # 从当前包的predict模块中导入NASPredictor类
from .val import NASValidator # 从当前包的val模块中导入NASValidator类
# 定义当前模块的公开接口
__all__ = 'NASPredictor', 'NASValidator', 'NAS' # 指定当使用from module import *时,公开的类和函数
注释说明:
-
导入模块:
from .model import NAS
:从当前包的model
模块中导入NAS
类,NAS
可能是一个神经网络架构或模型的定义。from .predict import NASPredictor
:从当前包的predict
模块中导入NASPredictor
类,NASPredictor
可能用于进行模型预测的功能。from .val import NASValidator
:从当前包的val
模块中导入NASValidator
类,NASValidator
可能用于验证模型性能的功能。
-
定义公开接口:
__all__
是一个特殊变量,用于定义当前模块中可以被外部访问的类和函数。当使用from module import *
时,只会导入__all__
中列出的内容。这有助于控制模块的公共API,避免不必要的名称冲突。
这个程序文件是Ultralytics YOLO(You Only Look Once)项目的一部分,主要涉及到神经架构搜索(NAS,Neural Architecture Search)相关的功能模块。文件的开头包含了版权信息,表明该代码遵循AGPL-3.0许可证。
在文件中,首先从同一目录下导入了三个重要的类:NAS
、NASPredictor
和NASValidator
。这些类分别代表了神经架构搜索的模型、预测器和验证器。具体来说,NAS
类可能用于定义和构建神经网络模型,而NASPredictor
则用于进行模型的预测,NASValidator
则用于验证模型的性能。
最后,__all__
变量被定义为一个元组,包含了这三个类的名称。这意味着当使用from module import *
的方式导入该模块时,只会导入NASPredictor
、NASValidator
和NAS
这三个类。这是一种控制模块导出内容的方式,确保只暴露特定的接口给外部使用。
总的来说,这个文件是Ultralytics YOLO项目中关于NAS功能的一个初始化模块,负责导入和管理与神经架构搜索相关的核心组件。
11.3 code\ultralytics\utils\callbacks\tensorboard.py
以下是代码中最核心的部分,并附上详细的中文注释:
# 导入必要的库
from ultralytics.utils import LOGGER, SETTINGS, TESTS_RUNNING, colorstr
try:
# 尝试导入TensorBoard的SummaryWriter,用于记录训练过程中的数据
from torch.utils.tensorboard import SummaryWriter
# 确保当前不是在测试运行中
assert not TESTS_RUNNING
# 确保TensorBoard集成已启用
assert SETTINGS["tensorboard"] is True
WRITER = None # 初始化TensorBoard的SummaryWriter实例
except (ImportError, AssertionError, TypeError, AttributeError):
# 处理导入错误或断言错误
SummaryWriter = None # 如果导入失败,则将SummaryWriter设置为None
def _log_scalars(scalars, step=0):
"""将标量值记录到TensorBoard中。"""
if WRITER: # 如果WRITER存在
for k, v in scalars.items(): # 遍历标量字典
WRITER.add_scalar(k, v, step) # 记录每个标量值
def _log_tensorboard_graph(trainer):
"""将模型图记录到TensorBoard中。"""
try:
import warnings
from ultralytics.utils.torch_utils import de_parallel, torch
imgsz = trainer.args.imgsz # 获取输入图像的大小
imgsz = (imgsz, imgsz) if isinstance(imgsz, int) else imgsz # 确保图像大小是一个元组
p = next(trainer.model.parameters()) # 获取模型参数以确定设备和类型
im = torch.zeros((1, 3, *imgsz), device=p.device, dtype=p.dtype) # 创建一个全零的输入图像
with warnings.catch_warnings():
warnings.simplefilter("ignore", category=UserWarning) # 忽略JIT跟踪警告
WRITER.add_graph(torch.jit.trace(de_parallel(trainer.model), im, strict=False), []) # 记录模型图
except Exception as e:
LOGGER.warning(f"WARNING ⚠️ TensorBoard图形可视化失败 {e}") # 记录警告信息
def on_pretrain_routine_start(trainer):
"""初始化TensorBoard记录,使用SummaryWriter。"""
if SummaryWriter: # 如果SummaryWriter可用
try:
global WRITER
WRITER = SummaryWriter(str(trainer.save_dir)) # 创建SummaryWriter实例
prefix = colorstr("TensorBoard: ")
LOGGER.info(f"{prefix}使用 'tensorboard --logdir {trainer.save_dir}' 启动,查看地址为 http://localhost:6006/")
except Exception as e:
LOGGER.warning(f"WARNING ⚠️ TensorBoard未正确初始化,未记录此次运行。 {e}") # 记录警告信息
def on_train_start(trainer):
"""记录TensorBoard图形。"""
if WRITER: # 如果WRITER存在
_log_tensorboard_graph(trainer) # 记录模型图
def on_train_epoch_end(trainer):
"""在训练周期结束时记录标量统计信息。"""
_log_scalars(trainer.label_loss_items(trainer.tloss, prefix="train"), trainer.epoch + 1) # 记录训练损失
_log_scalars(trainer.lr, trainer.epoch + 1) # 记录学习率
def on_fit_epoch_end(trainer):
"""在训练周期结束时记录周期指标。"""
_log_scalars(trainer.metrics, trainer.epoch + 1) # 记录训练指标
# 定义回调函数
callbacks = (
{
"on_pretrain_routine_start": on_pretrain_routine_start,
"on_train_start": on_train_start,
"on_fit_epoch_end": on_fit_epoch_end,
"on_train_epoch_end": on_train_epoch_end,
}
if SummaryWriter # 如果SummaryWriter可用
else {}
)
代码核心部分说明:
- TensorBoard的初始化与使用:代码尝试导入
SummaryWriter
,并在训练过程中使用它记录各种标量(如损失和学习率)和模型图。 - 记录标量:
_log_scalars
函数用于将训练过程中的标量数据记录到TensorBoard。 - 记录模型图:
_log_tensorboard_graph
函数用于将模型的计算图记录到TensorBoard,以便可视化模型结构。 - 回调函数:通过定义回调函数,在训练的不同阶段(如开始训练、每个周期结束等)执行相应的记录操作。
这个程序文件是用于集成 TensorBoard 日志记录功能的,主要用于 Ultralytics YOLO 模型的训练过程中的可视化。文件首先尝试导入 torch.utils.tensorboard
中的 SummaryWriter
,这是 TensorBoard 的一个核心组件,用于记录和保存训练过程中的各种指标和图形。
在导入时,程序会进行一些断言检查,确保当前不是在运行测试(TESTS_RUNNING
为 False),并且 TensorBoard 集成已启用(SETTINGS["tensorboard"]
为 True)。如果导入失败或断言失败,则会将 SummaryWriter
设置为 None,以避免后续调用时报错。
文件中定义了几个主要的函数:
-
_log_scalars(scalars, step=0)
:这个函数用于将标量值记录到 TensorBoard 中。它接收一个字典scalars
,其中包含要记录的标量数据和当前的训练步数step
。如果WRITER
存在,就会遍历字典并将每个标量值添加到 TensorBoard。 -
_log_tensorboard_graph(trainer)
:这个函数用于将模型的计算图记录到 TensorBoard。它首先获取输入图像的大小,并创建一个全零的张量作为输入。然后使用torch.jit.trace
对模型进行跟踪,并将生成的图形添加到 TensorBoard。如果过程中出现异常,会记录警告信息。 -
on_pretrain_routine_start(trainer)
:这个回调函数在预训练例程开始时被调用,用于初始化 TensorBoard 的日志记录。它会创建一个SummaryWriter
实例,并记录 TensorBoard 的启动信息。 -
on_train_start(trainer)
:在训练开始时调用,主要用于记录模型的计算图。 -
on_train_epoch_end(trainer)
:在每个训练周期结束时调用,记录训练损失和学习率等标量统计信息。 -
on_fit_epoch_end(trainer)
:在训练周期结束时调用,记录训练过程中计算的指标。
最后,文件定义了一个 callbacks
字典,其中包含了上述回调函数的映射关系。如果 SummaryWriter
可用,则这些回调函数会被注册;否则,字典为空。这种设计使得在没有 TensorBoard 支持的情况下,程序仍然能够正常运行而不会出错。
11.4 code\ultralytics\models\rtdetr\val.py
以下是经过简化和注释的核心代码部分:
import torch
from ultralytics.data import YOLODataset
from ultralytics.models.yolo.detect import DetectionValidator
from ultralytics.utils import ops
class RTDETRDataset(YOLODataset):
"""
RT-DETR数据集类,继承自YOLODataset类。
该类专为RT-DETR目标检测模型设计,优化了实时检测和跟踪任务。
"""
def __init__(self, *args, data=None, **kwargs):
"""初始化RTDETRDataset类,调用父类构造函数。"""
super().__init__(*args, data=data, **kwargs)
def load_image(self, i, rect_mode=False):
"""加载数据集中索引为'i'的图像,返回图像及其调整后的尺寸。"""
return super().load_image(i=i, rect_mode=rect_mode)
def build_transforms(self, hyp=None):
"""构建数据增强变换,主要用于评估阶段。"""
transforms = []
# 如果启用数据增强,构建相应的变换
if self.augment:
transforms = v8_transforms(self, self.imgsz, hyp, stretch=True)
# 添加格式化变换
transforms.append(
Format(
bbox_format="xywh", # 边界框格式
normalize=True, # 归一化
return_mask=self.use_segments, # 是否返回分割掩码
return_keypoint=self.use_keypoints, # 是否返回关键点
batch_idx=True, # 返回批次索引
mask_ratio=hyp.mask_ratio, # 掩码比例
mask_overlap=hyp.overlap_mask, # 掩码重叠
)
)
return transforms
class RTDETRValidator(DetectionValidator):
"""
RTDETRValidator类,扩展了DetectionValidator类,为RT-DETR模型提供验证功能。
该类允许构建RTDETR特定的数据集进行验证,并应用非极大值抑制进行后处理。
"""
def build_dataset(self, img_path, mode="val", batch=None):
"""
构建RTDETR数据集。
Args:
img_path (str): 图像文件夹路径。
mode (str): 模式(训练或验证),可自定义不同的增强。
batch (int, optional): 批次大小。
"""
return RTDETRDataset(
img_path=img_path,
imgsz=self.args.imgsz,
batch_size=batch,
augment=False, # 不进行增强
hyp=self.args,
rect=False, # 不使用矩形模式
cache=self.args.cache or None,
data=self.data,
)
def postprocess(self, preds):
"""对预测输出应用非极大值抑制。"""
bs, _, nd = preds[0].shape # 获取批次大小、通道数和预测数量
bboxes, scores = preds[0].split((4, nd - 4), dim=-1) # 分离边界框和分数
bboxes *= self.args.imgsz # 将边界框调整到原始图像大小
outputs = [torch.zeros((0, 6), device=bboxes.device)] * bs # 初始化输出
for i, bbox in enumerate(bboxes):
bbox = ops.xywh2xyxy(bbox) # 转换边界框格式
score, cls = scores[i].max(-1) # 获取最大分数和类别
pred = torch.cat([bbox, score[..., None], cls[..., None]], dim=-1) # 合并边界框、分数和类别
pred = pred[score.argsort(descending=True)] # 按分数排序
outputs[i] = pred # 保存结果
return outputs
def _prepare_batch(self, si, batch):
"""准备训练或推理的批次,应用变换。"""
idx = batch["batch_idx"] == si # 获取当前批次索引
cls = batch["cls"][idx].squeeze(-1) # 获取类别
bbox = batch["bboxes"][idx] # 获取边界框
ori_shape = batch["ori_shape"][si] # 获取原始图像尺寸
imgsz = batch["img"].shape[2:] # 获取图像尺寸
ratio_pad = batch["ratio_pad"][si] # 获取填充比例
if len(cls):
bbox = ops.xywh2xyxy(bbox) # 转换目标框格式
bbox[..., [0, 2]] *= ori_shape[1] # 转换到原始空间
bbox[..., [1, 3]] *= ori_shape[0] # 转换到原始空间
return dict(cls=cls, bbox=bbox, ori_shape=ori_shape, imgsz=imgsz, ratio_pad=ratio_pad)
def _prepare_pred(self, pred, pbatch):
"""准备并返回转换后的边界框和类别标签的批次。"""
predn = pred.clone() # 克隆预测
predn[..., [0, 2]] *= pbatch["ori_shape"][1] / self.args.imgsz # 转换到原始空间
predn[..., [1, 3]] *= pbatch["ori_shape"][0] / self.args.imgsz # 转换到原始空间
return predn.float() # 返回浮点型预测
代码注释说明:
- RTDETRDataset: 这是一个专门为RT-DETR模型设计的数据集类,继承自YOLODataset。它实现了图像加载和数据增强的功能。
- load_image: 该方法用于加载指定索引的图像,并返回图像及其调整后的尺寸。
- build_transforms: 构建数据增强的变换,主要用于评估阶段,返回格式化的变换。
- RTDETRValidator: 这是一个验证器类,扩展了DetectionValidator,专门用于RT-DETR模型的验证。
- build_dataset: 构建RTDETR数据集,允许用户自定义训练和验证模式。
- postprocess: 对模型的预测结果应用非极大值抑制,返回处理后的边界框和类别信息。
- _prepare_batch: 准备训练或推理的批次,应用必要的变换。
- _prepare_pred: 准备并返回转换后的预测结果。
这个程序文件是用于实现RT-DETR(实时检测与跟踪)模型的验证功能,主要包含两个类:RTDETRDataset
和RTDETRValidator
。文件首先导入了必要的库和模块,包括PyTorch和Ultralytics库中的一些功能。
RTDETRDataset
类继承自YOLODataset
类,专门为RT-DETR模型设计,优化了实时检测和跟踪任务。该类的构造函数调用了父类的构造函数,并提供了加载图像和构建变换的方法。load_image
方法用于从数据集中加载单张图像,并返回图像及其调整后的尺寸。build_transforms
方法则用于构建图像变换,主要用于评估阶段,支持多种数据增强选项。
RTDETRValidator
类继承自DetectionValidator
类,提供了针对RT-DETR模型的验证功能。该类能够构建特定于RT-DETR的数据集,应用非极大值抑制(NMS)进行后处理,并更新评估指标。build_dataset
方法用于构建RT-DETR数据集,接收图像路径、模式(训练或验证)和批次大小等参数。postprocess
方法实现了对预测输出的非极大值抑制,处理后返回经过筛选的边界框和分数。_prepare_batch
和_prepare_pred
方法分别用于准备训练或推理的批次数据,以及处理和返回变换后的边界框和类别标签。
整体来看,这个文件为RT-DETR模型的验证提供了必要的工具和方法,支持实时检测与跟踪任务的评估。
11.5 code\ultralytics\nn\modules\block.py
以下是经过简化和注释的核心代码部分,主要保留了 YOLO 模型中的重要模块及其功能:
import torch
import torch.nn as nn
import torch.nn.functional as F
class DFL(nn.Module):
"""
分布焦点损失(DFL)模块。
该模块用于计算目标检测中的焦点损失。
"""
def __init__(self, c1=16):
"""初始化卷积层,输入通道数为 c1。"""
super().__init__()
# 创建一个卷积层,将 c1 通道的输入映射到 1 通道的输出
self.conv = nn.Conv2d(c1, 1, 1, bias=False).requires_grad_(False)
# 初始化卷积层的权重为 0 到 c1 的范围
x = torch.arange(c1, dtype=torch.float)
self.conv.weight.data[:] = nn.Parameter(x.view(1, c1, 1, 1))
self.c1 = c1
def forward(self, x):
"""前向传播,应用卷积层并返回结果。"""
b, c, a = x.shape # b: batch size, c: channels, a: anchors
# 将输入 x 进行形状变换并通过卷积层,最后返回结果
return self.conv(x.view(b, 4, self.c1, a).transpose(2, 1).softmax(1)).view(b, 4, a)
class Proto(nn.Module):
"""YOLOv8 掩膜原型模块,用于分割模型。"""
def __init__(self, c1, c_=256, c2=32):
"""初始化 YOLOv8 掩膜原型模块,指定原型和掩膜的数量。"""
super().__init__()
self.cv1 = Conv(c1, c_, k=3) # 第一个卷积层
self.upsample = nn.ConvTranspose2d(c_, c_, 2, 2, 0, bias=True) # 上采样层
self.cv2 = Conv(c_, c_, k=3) # 第二个卷积层
self.cv3 = Conv(c_, c2) # 第三个卷积层
def forward(self, x):
"""通过上采样和卷积层进行前向传播。"""
return self.cv3(self.cv2(self.upsample(self.cv1(x))))
class HGStem(nn.Module):
"""
PPHGNetV2 的 StemBlock,包含 5 个卷积层和一个最大池化层。
"""
def __init__(self, c1, cm, c2):
"""初始化 StemBlock,指定输入输出通道。"""
super().__init__()
self.stem1 = Conv(c1, cm, 3, 2, act=nn.ReLU()) # 第一个卷积层
self.stem2a = Conv(cm, cm // 2, 2, 1, 0, act=nn.ReLU()) # 第二个卷积层
self.stem2b = Conv(cm // 2, cm, 2, 1, 0, act=nn.ReLU()) # 第三个卷积层
self.stem3 = Conv(cm * 2, cm, 3, 2, act=nn.ReLU()) # 第四个卷积层
self.stem4 = Conv(cm, c2, 1, 1, act=nn.ReLU()) # 第五个卷积层
self.pool = nn.MaxPool2d(kernel_size=2, stride=1, padding=0, ceil_mode=True) # 最大池化层
def forward(self, x):
"""前向传播,经过多个卷积层和池化层。"""
x = self.stem1(x)
x = F.pad(x, [0, 1, 0, 1]) # 填充
x2 = self.stem2a(x)
x2 = F.pad(x2, [0, 1, 0, 1]) # 填充
x2 = self.stem2b(x2)
x1 = self.pool(x) # 池化
x = torch.cat([x1, x2], dim=1) # 拼接
x = self.stem3(x)
x = self.stem4(x)
return x
class Bottleneck(nn.Module):
"""标准瓶颈模块。"""
def __init__(self, c1, c2, shortcut=True, g=1, k=(3, 3), e=0.5):
"""初始化瓶颈模块,指定输入输出通道、是否使用快捷连接等参数。"""
super().__init__()
c_ = int(c2 * e) # 隐藏通道数
self.cv1 = Conv(c1, c_, k[0], 1) # 第一个卷积层
self.cv2 = Conv(c_, c2, k[1], 1, g=g) # 第二个卷积层
self.add = shortcut and c1 == c2 # 是否使用快捷连接
def forward(self, x):
"""前向传播,应用卷积并返回结果。"""
return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
代码说明:
- DFL:实现了分布焦点损失的计算,主要用于目标检测任务中。
- Proto:YOLOv8 的掩膜原型模块,负责生成分割掩膜。
- HGStem:PPHGNetV2 的 StemBlock,包含多个卷积层和一个最大池化层,用于特征提取。
- Bottleneck:标准的瓶颈模块,包含两个卷积层,并支持快捷连接以提高网络的深度和性能。
以上模块是 YOLO 模型中非常重要的组成部分,负责特征提取和损失计算。
这个程序文件是一个用于构建深度学习模型的模块,特别是与YOLO(You Only Look Once)系列目标检测模型相关的模块。文件中定义了多个类,每个类代表一种特定的网络结构或功能模块,主要用于图像处理和特征提取。
首先,文件导入了必要的PyTorch库,包括torch
和torch.nn
,以及一些自定义的卷积模块(如Conv
、DWConv
等)和变换模块(如TransformerBlock
)。这些模块为构建复杂的神经网络提供了基础。
文件中定义的类包括:
-
DFL:实现了分布焦点损失(Distribution Focal Loss),用于处理类别不平衡问题。它通过卷积层对输入进行处理,并返回经过softmax处理的结果。
-
Proto:YOLOv8的掩码原型模块,主要用于分割模型。它通过一系列卷积层和上采样层处理输入特征图。
-
HGStem:PPHGNetV2的StemBlock,包含多个卷积层和一个最大池化层,用于特征提取。
-
HGBlock:PPHGNetV2的HG_Block,包含多个卷积层,支持轻量级卷积(LightConv)和快捷连接(shortcut)。
-
SPP和SPPF:实现空间金字塔池化(Spatial Pyramid Pooling)层,前者支持多种池化大小,后者则是其快速实现版本。
-
C1、C2、C2f、C3、C3x、RepC3、C3TR、C3Ghost:这些类实现了不同类型的CSP(Cross Stage Partial)瓶颈结构,支持不同数量的卷积层和快捷连接选项,旨在提高网络的特征提取能力。
-
GhostBottleneck:实现了Ghost Bottleneck结构,旨在通过减少参数量和计算量来提高网络的效率。
-
Bottleneck和BottleneckCSP:标准瓶颈结构和CSP瓶颈结构的实现,分别用于特征的压缩和提取。
-
ResNetBlock和ResNetLayer:实现了ResNet的基本块和层,支持多个ResNet块的堆叠,适用于更深层次的网络结构。
每个类都有其初始化方法和前向传播方法,前向传播方法定义了如何将输入数据通过该模块进行处理。通过组合这些模块,可以构建出复杂的神经网络架构,以满足不同的计算机视觉任务需求,如目标检测、图像分割等。
整体来看,这个文件为YOLO系列模型提供了灵活的构建模块,能够根据不同的需求进行扩展和修改。
11.6 train.py
以下是代码中最核心的部分,并附上详细的中文注释:
class DetectionTrainer(BaseTrainer):
"""
DetectionTrainer类扩展自BaseTrainer类,用于基于检测模型的训练。
"""
def build_dataset(self, img_path, mode="train", batch=None):
"""
构建YOLO数据集。
参数:
img_path (str): 包含图像的文件夹路径。
mode (str): 模式,`train`表示训练模式,`val`表示验证模式,用户可以为每种模式自定义不同的数据增强。
batch (int, optional): 批次大小,仅用于`rect`模式。默认为None。
"""
gs = max(int(de_parallel(self.model).stride.max() if self.model else 0), 32) # 获取模型的最大步幅
return build_yolo_dataset(self.args, img_path, batch, self.data, mode=mode, rect=mode == "val", stride=gs)
def get_dataloader(self, dataset_path, batch_size=16, rank=0, mode="train"):
"""构造并返回数据加载器。"""
assert mode in ["train", "val"] # 确保模式是训练或验证
with torch_distributed_zero_first(rank): # 在分布式环境中,仅初始化数据集一次
dataset = self.build_dataset(dataset_path, mode, batch_size) # 构建数据集
shuffle = mode == "train" # 训练模式下打乱数据
if getattr(dataset, "rect", False) and shuffle:
LOGGER.warning("WARNING ⚠️ 'rect=True'与DataLoader的shuffle不兼容,设置shuffle=False")
shuffle = False # 如果使用rect模式,则不打乱数据
workers = self.args.workers if mode == "train" else self.args.workers * 2 # 根据模式设置工作线程数
return build_dataloader(dataset, batch_size, workers, shuffle, rank) # 返回数据加载器
def preprocess_batch(self, batch):
"""对一批图像进行预处理,包括缩放和转换为浮点数。"""
batch["img"] = batch["img"].to(self.device, non_blocking=True).float() / 255 # 将图像转换为浮点数并归一化
if self.args.multi_scale: # 如果启用多尺度训练
imgs = batch["img"]
sz = (
random.randrange(self.args.imgsz * 0.5, self.args.imgsz * 1.5 + self.stride)
// self.stride
* self.stride
) # 随机选择新的图像大小
sf = sz / max(imgs.shape[2:]) # 计算缩放因子
if sf != 1:
ns = [
math.ceil(x * sf / self.stride) * self.stride for x in imgs.shape[2:]
] # 计算新的形状
imgs = nn.functional.interpolate(imgs, size=ns, mode="bilinear", align_corners=False) # 调整图像大小
batch["img"] = imgs # 更新批次中的图像
return batch
def get_model(self, cfg=None, weights=None, verbose=True):
"""返回YOLO检测模型。"""
model = DetectionModel(cfg, nc=self.data["nc"], verbose=verbose and RANK == -1) # 创建检测模型
if weights:
model.load(weights) # 加载权重
return model
def get_validator(self):
"""返回用于YOLO模型验证的DetectionValidator。"""
self.loss_names = "box_loss", "cls_loss", "dfl_loss" # 定义损失名称
return yolo.detect.DetectionValidator(
self.test_loader, save_dir=self.save_dir, args=copy(self.args), _callbacks=self.callbacks
) # 返回验证器
def plot_training_samples(self, batch, ni):
"""绘制带有注释的训练样本。"""
plot_images(
images=batch["img"],
batch_idx=batch["batch_idx"],
cls=batch["cls"].squeeze(-1),
bboxes=batch["bboxes"],
paths=batch["im_file"],
fname=self.save_dir / f"train_batch{ni}.jpg",
on_plot=self.on_plot,
) # 绘制图像及其边界框
def plot_metrics(self):
"""从CSV文件中绘制指标。"""
plot_results(file=self.csv, on_plot=self.on_plot) # 保存结果图像
代码核心部分说明:
- DetectionTrainer类:这是一个用于训练YOLO检测模型的类,继承自
BaseTrainer
。 - build_dataset方法:用于构建YOLO数据集,接受图像路径、模式和批次大小作为参数。
- get_dataloader方法:构造数据加载器,支持训练和验证模式,并根据需要初始化数据集。
- preprocess_batch方法:对输入的图像批次进行预处理,包括归一化和调整大小。
- get_model方法:返回一个YOLO检测模型,可以选择加载预训练权重。
- get_validator方法:返回用于模型验证的验证器。
- plot_training_samples和plot_metrics方法:用于可视化训练样本和绘制训练指标。
这个程序文件 train.py
是一个用于训练目标检测模型的脚本,主要基于 YOLO(You Only Look Once)模型。程序中定义了一个名为 DetectionTrainer
的类,该类继承自 BaseTrainer
,用于处理与目标检测相关的训练任务。
在类的构造函数中,首先定义了一些方法来构建数据集、获取数据加载器、预处理批次数据、设置模型属性、获取模型、获取验证器、记录损失项、输出训练进度字符串、绘制训练样本、绘制指标以及绘制训练标签。
build_dataset
方法用于构建 YOLO 数据集,接受图像路径、模式(训练或验证)和批次大小作为参数。它会根据模型的步幅来调整数据集的构建方式。
get_dataloader
方法用于构建和返回数据加载器。它会根据训练或验证模式来设置数据集的加载方式,并在必要时调整工作线程的数量。
preprocess_batch
方法负责对输入的图像批次进行预处理,包括缩放和转换为浮点数格式。它还支持多尺度训练,随机选择图像的大小进行训练,以增强模型的鲁棒性。
set_model_attributes
方法用于设置模型的属性,包括类别数量和类别名称等,以确保模型能够正确处理输入数据。
get_model
方法用于返回一个 YOLO 检测模型,可以选择加载预训练权重。
get_validator
方法返回一个用于验证 YOLO 模型的验证器,以便在训练过程中进行模型性能评估。
label_loss_items
方法用于返回带有标签的训练损失项字典,方便在训练过程中记录和监控损失。
progress_string
方法返回一个格式化的字符串,显示训练进度,包括当前的 epoch、GPU 内存使用情况、损失值、实例数量和图像大小等信息。
plot_training_samples
方法用于绘制训练样本及其注释,帮助可视化训练过程中的数据。
plot_metrics
方法用于从 CSV 文件中绘制训练指标,生成训练过程中的结果图。
最后,plot_training_labels
方法用于创建一个带标签的训练图,展示训练数据中的边界框和类别信息。
总体来说,这个程序文件提供了一个完整的框架,用于训练 YOLO 模型进行目标检测,涵盖了数据处理、模型构建、训练过程监控和结果可视化等多个方面。
12.系统整体结构(节选)
整体功能和架构概括
该项目是一个基于YOLO(You Only Look Once)系列模型的目标检测框架,包含多个模块和功能,旨在提供一个完整的训练、验证和推理流程。项目的核心功能包括:
- 模型构建:通过不同的模块和类,构建YOLO及其变种(如RT-DETR)的神经网络结构。
- 数据处理:实现数据集的加载、预处理和增强,支持多种输入格式和标签类型。
- 训练与验证:提供训练过程的管理,包括损失计算、模型评估和可视化工具(如TensorBoard)。
- 推理与导出:支持模型的推理过程,并提供导出功能,以便在不同平台上使用。
- 可视化:通过绘制训练样本和指标,帮助用户理解模型的训练过程和性能。
文件功能整理表
文件路径 | 功能描述 |
---|---|
D:\tools\20240809\code\ui.py | 启动Streamlit应用,运行YOLO模型的Web界面。 |
D:\tools\20240809\code\70+种YOLOv8算法改进源码大全和调试加载训练教程(非必要)\ultralytics\models\nas\__init__.py | 导入神经架构搜索(NAS)相关的核心组件,包括NAS 、NASPredictor 和NASValidator 类。 |
D:\tools\20240809\code\code\ultralytics\utils\callbacks\tensorboard.py | 集成TensorBoard日志记录功能,支持训练过程中的指标记录和可视化。 |
D:\tools\20240809\code\code\ultralytics\models\rtdetr\val.py | 实现RT-DETR模型的验证功能,包括数据集构建、后处理和评估指标计算。 |
D:\tools\20240809\code\code\ultralytics\nn\modules\block.py | 定义多种神经网络模块(如卷积层、瓶颈结构等),用于构建YOLO及其变种的网络架构。 |
D:\tools\20240809\code\train.py | 训练YOLO模型的主脚本,负责数据集构建、模型训练、损失记录和训练过程监控。 |
D:\tools\20240809\code\code\ultralytics\engine\exporter.py | 实现模型导出功能,将训练好的模型保存为可用于推理的格式。 |
D:\tools\20240809\code\70+种YOLOv8算法改进源码大全和调试加载训练教程(非必要)\ultralytics\nn\modules\utils.py | 提供各种实用工具函数,支持模型训练和推理过程中的辅助功能。 |
D:\tools\20240809\code\code\ultralytics\models\sam\modules\transformer.py | 实现Transformer模块,可能用于特征提取或增强模型的表达能力。 |
D:\tools\20240809\code\code\ultralytics\models\utils\ops.py | 定义各种操作函数,支持模型的计算过程,如卷积、激活等。 |
D:\tools\20240809\code\70+种YOLOv8算法改进源码大全和调试加载训练教程(非必要)\ultralytics\nn\extra_modules\kernel_warehouse.py | 实现额外的模块或功能,可能用于特定的模型优化或增强。 |
D:\tools\20240809\code\code\ultralytics\data\dataset.py | 定义数据集类,负责数据的加载、预处理和增强,支持多种数据格式和标签类型。 |
D:\tools\20240809\code\70+种YOLOv8算法改进源码大全和调试加载训练教程(非必要)\ultralytics\utils\torch_utils.py | 提供与PyTorch相关的实用工具函数,支持模型训练和推理过程中的操作。 |
以上表格总结了每个文件的主要功能,展示了项目的整体架构和各个模块之间的关系。通过这些模块的协作,用户可以方便地进行目标检测模型的训练、验证和推理。
注意:由于此博客编辑较早,上面“11.项目核心源码讲解(再也不用担心看不懂代码逻辑)”中部分代码可能会优化升级,仅供参考学习,完整“训练源码”、“Web前端界面”和“70+种创新点源码”以“13.完整训练+Web前端界面+70+种创新点源码、数据集获取(由于版权原因,本博客仅提供【原始博客的链接】,原始博客提供下载链接)”的内容为准。
13.完整训练+Web前端界面+70+种创新点源码、数据集获取(由于版权原因,本博客仅提供【原始博客的链接】,原始博客提供下载链接)
参考原始博客1: https://gitee.com/qunshansj/cctv-model432
参考原始博客2: https://github.com/VisionMillionDataStudio/cctv-model432