Denoising point sets via L0 minimization

1.介绍

表面重建是一种广泛使用的几何处理工具,用于数字化现实世界的对象。在许多情况下,对重建算法的输入是从所讨论的对象获取的点集。然而,尽管新的方法和采集硬件,在这些点集中不可避免地出现诸如噪声和离群点之类的错误。此外,重构表面的质量很大程度上取决于输入点集的质量。然而,降噪点集本质上是一个具有挑战性的问题,因为根据定义,没有连接信息来指导去噪过程。具有尖锐特征的去噪点集甚至有更多的问题,特别是在存在较大噪声的情况下,因为这些特征很难与噪声区分开来。

我们的观察是,许多常见的表面是分段光滑的,也就是说,表面几乎是光滑的,除了在一些小的稀疏特征,形成尖锐的特征。因此,我们可以明确地利用这种稀疏性并且优化这样的表面。直接优化解的稀疏性的思想是压缩感知领域的一个关键思想(DoooHo,2006;Cordes等人,2006)。优化稀疏解决方案的主要思想是测量与解决方案稀疏有关的范数中的误差。L0范数是这样的度量,它测量向量中的非零项的数目,并且直接与稀疏性相关。然而,该规范由于其离散的,组合性质而难以优化。因此,作为一种妥协,许多研究人员使用最稀疏凸范数,L1范数,产生一个可处理的优化方案,仍然产生稀疏的解决方案。

在计算机图形学中,L1范数已被应用于包括图像平滑和去模糊(Chanet等人,2001;莱文等人,2007;Ruin等人,1992),网格去噪(王等人,2014)和点集重建(AVRon等人,2010)的若干领域。最近,已经开发了几种技术,直接优化L0范数平滑(徐等人,2011)和去模糊(许等,2013)图像。He和舍费尔(2013)也将图像的L0平滑化(许等人,2011)扩展到表面。

然而,据我们所知,没有现有的方法直接使用L0范数去噪点云,从而产生最稀疏的解决方案。受最近关于图像L0最小化(Xu等人,2011)和网格(HE和舍费尔,2013)的启发,我们提出了一种通过L0最小化去噪点集的算法。我们的方法可以有效地消除噪声,最大限度地平滑区域,并恢复锋利的特征。

为了总结我们的工作的成果,我们首先扩展从图像和网格到非结构化点云的L0最小化。此外,我们的方法忠实地恢复点位置和点方向,并提高边缘感知上采样(EAR)(黄等人,2013)的性能,即使在存在大量噪声的情况下。最后,我们开发了一个投影算子来恢复尖锐的特征。

2.相关工作

去噪点云已经被许多研究者所研究,特别是在表面重建的背景下。局部最优投影仪(LOP)相关方法(黄等,2009, 2013;廖等,2013;LiPman等人,2007;PrimeR等人,2014)最近由于其对离群点的鲁棒性而备受关注。LOP算子的核心是将任意数量的粒子投影到一个点集上,以表示原始点集的局部L1中值。加权LOP(WLOP)(黄等人,2009)通过产生更均匀分布的点集来改进原始LOP(LiPman等人,2007);内核LOP(KLOP)降低了原始LOP的计算成本;通过各向异性根据点的方向投影点到当地L1中位数,各向异性LOP(黄等人,2013)比WLOP和KLOP可以更好地保持尖锐特征。然而,LOP方法使用本地运算符,这可以影响输出的质量,尤其是当本地、高噪声信号比产生冗余特征时,或者在另一极端,过度平滑(AVRon等人,2010)。

在稀疏解空间中直接优化的思想是一个信号处理的概念,它开始对计算机图形学产生重大影响。这些优化在本质上是全局性的,并且不受LOP方法所能带来的局部性问题的影响。L0范数直接测量稀疏性,但直接最小化L0范数是一个高度非凸的问题,由于其离散的、组合的性质(HE和舍费尔,2013)难以优化。因此,许多研究人员使用一个凸范数,如L1,仍然倾向于产生稀疏的解决方案。在图像处理的内容中,采用L1范数来进行去噪,利用图像的总变化的稀疏性(Chan.等人,2001;莱文等人,2007;Ruin等人,1992)来使其变清晰。对于三维表面重建,AVRon等(2010)将L1稀疏性概念应用于去噪点集,通过直接应用重加权L1最小化过程来恢复点方向,然后恢复点位置,以保持尖锐特征。我们的方法也是一个全局性的方法,但比AVRON等(2010)可以处理更高级别的噪声,因为L0是比L1更稀疏的解。虽然它们的方法能够产生合理的结果,但是边缘上的点有时不被忠实地恢复,并且相应的重建边缘不是直线的或平滑弯曲的。我们的投影算子可以更好地恢复沿边缘的点。

最近,已经开发了几种技术,试图直接优化L0范数。这样的优化已经应用于图像平滑(Xu等人,2011),图像去模糊(许等人,2013),甚至各向异性表面去噪(HE和舍费尔,2013)。

虽然与点云去噪不直接相关,表面重建方法经常使用点云,重建表面的质量强烈地依赖于输入点云的质量。表面重建技术主要有两类:参数化和隐式重建。参数化方法明确地建立了重构曲面的拓扑结构,并经常使用Delaunay三角剖分或Voronoi图(AMATA等人,1998;BoiSonnAT,1984;EdssBrunne和MuCck,1994)。隐式方法构造一个函数,其水平集是重构曲面。这些隐式函数可以采取多种形式,如符号距离字段(Bajj.et al,1995;BoiSunnAT和CaZales,2002;Hoppe等,1992)。径向基函数(CARR等人,2001),甚至泊松方程的解(KaZZAN等人,2006;KaZhanDand和Hoppe,2013)也被用来创建这些隐式函数。然而,所提到的所有方法在噪声数据存在或输出表面过于光滑时都表现不佳。

另一种相关的方法是使用移动租赁方阵(MLS)从点云进行表面重建的想法(Alexa等人,2003;Amenta和KIL,2004;莱文,2004;GueNebaod等人,2008;Guennebaud和Grand,2007)。这些过程通过迭代投影点到局部拟合多项式来进行表面重建。MLS是由大自然设计的,用来重建到处光滑的表面。为了克服这种限制,许多方法已被纳入MLS以更好地保存尖锐特征,如细胞复合物(Adthon和Alexa,2006),标记点云(Guennebaud和Grand,2007),和稳健统计(Frasman等人,2005;OZTiReli等人,2009)。然而,像LOP方法一样,当噪声量较大时,操作的局部性可以导致全局方法避免的伪影。

我们的工作使用L0优化直接平滑点云,因此,可以处理大量的噪声。我们平滑过程的一部分涉及估计每个点的法线。有多种重构点法线的方法,从简单拟合局部切线平面(Hoppe等人,1992)到更健壮的方法,如离群点去除(黄等人,2009),L1最小化(AVRon等人,2010),随机化Hough变换(Boulch和MARLet,2012),以及基于稳健统计的方法(Kalogerakis等人,2007;Li等人,2010;OZTiReli等人,2009;郑等人,2010)。在本文中,我们将证明,我们的L0最小化方法不仅可以稳健地恢复点位置,而且忠实地重建点方向。

2.1 L0优化

L0规范直接度量稀疏性,但很难直接优化。最近,Xu等人(2011)提供了一种算法,在图像平滑的背景下直接优化L0范数,生成分段常数图像和He和He Schaefer(2013)使用了相似的L0最小化策略来消除网格噪声。我们的工作扩展了L0最小化的概念,从图像平滑和网格去噪到点集去噪。在本节中,我们将在上下文中回顾L0最小化,在一维信号平滑、二维图像平滑、三维网格去噪的背景下。

向量v的L0范数定义为非零项的个数。也就是说,

给定一个一维信号Sˆ和微分算子D,我们可以通过对最小值S进行优化来对S^进行降噪。

(1)

第一项是一个数据保真项,以确保输出值不过于偏离输入,λ控制输出的平滑程度。D(S)是一个返回值向量的运算符。例如,如果输出S应该是分段常数,应该选择D(S)来消去常数函数。例如,D(S)i = Si + 1−Si。图1显示了使用该算子和使用不同规范来平滑一维信号的比较,表明L0范数产生稀疏的解决方案。

Xu et al.(2011)使用这种优化方案来平滑图像,并将S定义为图像中的像素颜色,定义D(S)为颜色梯度向量。他和Schaefer(2013)也使用这个框架对曲面进行各向异性的平滑处理。作者选择S作为网格中顶点的位置,并推导出基于边的拉普拉斯算子D(S),它消除了线性函数。

为了最小化Eq(1),徐等人引入了一个辅助变量σ到公式

(2)

其中β控制这种最小化问题有多快接近于等式Eq(1),并且最初被设置为一个小的值。然后,通过对S的初始猜测,作者通过首先保持S常数和求解σ来最小化这个问题,给出以下的最小化方案。

    

这种优化的解决方案是由σi=0得到的,如果 或者 。其次,作者保持了σ为常数,在等式(2)中求解S,从而得到以下的最优化。

    (3)

这个方程是二次的,因此有一个全局最小值,这是很容易找到的。然后用β=2β来重复这两个优化来迫使D(S)逼近β,随着β趋向于无穷大。

3.点云去噪的L0最小化

区别点云与图像和网格的一个重要区别是点云不具有连通性信息,而图像或网格具有像素和顶点,具有完全定义的邻域。和第2.1节相似,我们将S定义为点的向量。然而,由于缺少明确定义的邻居,D(S)更难定义。因此,很难将第2.1节的技术应用于点云。

为了简化问题,我们去掉了方向和位置。使用类似的L0优化,我们首先求解法线,然后,基于这个法线信息,恢复点的位置。我们的算法可以分解为3个步骤。首先,我们通过观察相邻点之间的法线除了接近尖锐的特征外应该平滑地变化来估算法线。然后,我们根据估计的法线信息来修改点的位置,观察到如果点位于光滑区域上,点和它的k近邻应该形成一个垂直于点法线的平面。最后,我们沿着边缘修复点,来更好地代表潜在的几何形状。重复该过程直到收敛。图4展示了我们的算法的简单的演示,图12中出现了更加复杂的实例。

3.1法向量估计

为了估计点云中的每个点的法线,我们首先使用局部PCA来计算初始法线N^。然后我们最小化目标函数。

    

其中D(N)ik+j=Ni-NM(i,j)和M(i,j)给出了i点k近邻集合中的第j个入口。因此,D(N)是个向量,其长度是输入点的k倍。与第2.1节相似,我们引入辅助变量θ,一个和D(N)长度相同的向量,用于优化

   

也可以写成

    

我们用交替优化方法求解这个方程,除了|Ni|=1约束导致等式(3)约束二次的极小化。

3.2点降噪

接下来,我们使用估计的法线N来重新定位点。由于法线编码形状的高阶几何信息(Guskov等人,1999),沿法线方向的位移点可以平滑下表面。因此,为了减少我们的优化中的自由度的数目而不显著影响输出表面的质量,我们限制每个点只在其正常方向上移动。设P是初始点集。然后我们最优化

       

这里D(P)将测量k个最近邻居中的每个点与由每个点和法线定义的平面的偏差,也就是D(P)ik+j=(Pi-PM(i,j))·Ni。因此,上述目标函数变成

        

由于我们限制每个Pi仅沿其法线方向Ni移动,那么P=P~+αN,其中α是系数的对角矩阵,P~是从全优化过程的前一次迭代中的点的位置,并且最初,P~=P^。因此,我们可以根据α中的条目来优化P,因此,

其中αi指的是矩阵α的第i对角线条目。扩展此表达式

其中D(P~)ik+j指的是(P~ i-P m(i,j))·Ni。同样,这个问题可以通过添加辅助变量和使用第2.1节中的交替优化方法来解决。

3.3边缘恢复

图4和7表明,当点云包含大量噪声时,在3.2节中的点去噪阶段之后会产生交叉伪影。为了减少这种伪影并更好地呈现尖锐特征,我们使用投影算子来重新定位尖锐特征附近的点。

我们观察到,在尖锐特征的相对侧上的点具有不同方向的法线,而光滑区域上的点在它们的法线之间具有小的变化。对于每个顶点Pi,如果存在另一个顶点P m(i,j),则将顶点归类为一个尖锐特征,这是Pi和|Ni-Nm(i,j)|>s的k个最近邻之一。接下来,对于每个这样的顶点Pi,我们重新定位Pi,使其最小化(由Pi邻域中的点P m(i,j)所定义的所有平面)到(点对应的法线Nm(i,j))的距离。因此,点Pi的新的位置x是

注意,在存在尖锐边缘的情况下,这种最小化是可能的。在这种情况下,我们发现在解空间中x是最接近Pi的点。这个投影的效果是点Pi将被投影到尖锐的特征。

图8用两个表面相遇的简单示例演示了这种投影算子。在图8之前的情况下,表面都是平面的,并且投影点projp将位于边缘上。然而,在图8之后的情况下,表面是弯曲的。因此,投影点projp不会完全位于锐利特征上。然而,我们的优化是迭代的,并且在每次迭代中,projp移动更加接近锐利特征。图4和12给出了投影算子在噪声点集上的结果。

我们的边缘恢复方法适用于直线和弯曲的尖锐特征。图3, 11, 12和13全部演示了包含弯曲的锐利边缘的形状。

 

4.点云上采样

我们的L0最小化产生位于边缘和粗鲁的法向量估计的分段光滑点集上的点。然而,在第3.3节中描述的边缘恢复过程遭受副作用,即边缘附近出现间隙,因为附近的顶点已经投射到边缘,如图4和12所示。为了弥补尖锐特征附近的间隙,我们使用EAR算法的第二步骤(黄等人,2013)对L0最小化的结果进行上采样。

原来的EAR方法(黄等人,2013)由两个步骤组成。第一阶段(AWLOP_EAR)是基于各向异性WLOP算子对远离边缘的点进行重新采样以产生可靠的点的定位。然后,基于这些法线,将新的点插入并投影到由点集定义的未知基础表面上(UPSAMPLE_EAR)。由于点插入过程依赖于边缘附近的高质量法线,所以作者指出,较差的法线估计导致不可接受的上采样(黄等人,2013)。

我们使用UPSAMPLE_EAR后处理我们的L0最小化结果。由于我们的L0方法可以产生更可靠的点方向,使用UPSAMPLE_EAR对结果进行上采样比原始EAR产生更精确的结果。我们展示了我们的L0上的UPSAMPLE_EAR和图9,11中的原始EAR的比较。9和11,表明我们的方法可以更好地保存尖锐的特征。

 

5.结果与讨论

在本文中的所有例子中,如果没有规范,我们通过高斯噪声使用包围盒对角线长度的2%的标准偏差破坏点集。图15中的犰狳是一个真正的点扫描。 在图4中,我们展示了我们在V形表面上的方法的结果。在这个简单的例子中,我们的L0最小化可以重建一个干净的点集,表示具有精确法线的分段光滑表面。

图12在一个更复杂的形状中展示了我们的方法,并演示了随着我们迭代,我们的结果如何演变。如中间行(2次迭代)所示,我们的结果是在位置去噪阶段之后的分段平滑后,但点可能包含一些尖锐特征附近的“交叉”工件。在边缘恢复阶段之后,这些伪影被去除。下一行展示了在4次迭代之后显示相同的步骤,底部展示了在5次迭代之后我们的结果,表示我们的结果收敛到具有尖锐特征点采样的分段光滑点集。

我们还分别地评估了我们的方法的三个不同阶段(正常估计,点去噪,边缘恢复)。为了公平,我们对于所有方法使用相对相同的邻域大小。图5展示出了我们的L0方法和现有方法包括双边滤波、RIMLS(OZTIERI等人,2009)和各向异性WLOP(黄等人,2013)对点位置进行估计的比较。虽然即使是显著的噪声我们的L0方法是相当有弹性的,但随着噪声水平的增加,所有方法的性能都在提高。

图2:比较我们的方法和各种最先进的点集去噪方法。第一行从左到右:(a)地面实况(7582点),(b)输入噪声点云(7582点),(c)APSS+RIMLS(7287点),(d)WLOP(7062点),(e)EAR(AWLOP+UPSAMPLE_EAR)(18K点),和(f)我们的方法(L0最小化+UPSAMPLE_EAR)(18K点)。点是通过曲率着色的。第二行显示从使用“球旋转”算法(贝尔纳迪尼等,1999)从相应的点集重建的表面。

图3:比较我们的方法和各种最先进的点集去噪方法。第一行从左到右:(a)输入噪声点云(27 K点),(b)APSS+RIMLS(26K点),(c)WLOP(127K点),(D)EAR(AWLOP+ UPSAMPLE_EAR)(182K点),和(E)我们的方法(L0最小化+UPSAMPLE_EAR)(182K点)。第二行显示相应的法线着色。

在图6中,我们展示了我们的点去噪步骤的有效性。第一行演示使用局部PCA计算的法线的双边滤波和各向异性WLOP的结果。下面,我们使用法线从我们L0法线估计步骤展示了相同的方法。在每种情况下,结果都得到改善。然而,双边滤波遭受“交叉”伪影,同时各向异性WLOP在尖锐的特征周围产生的大间隙。我们的L0结果都没有出现问题。

最后,图16和17表明,我们的方法比各向异性WLOP更好地保留边缘。使用我们的L0去噪干净点集作为输入,各向异性WLOP表示边缘时更差,平滑区域之间的间隙变小。我们的L0降噪点集上的UPSAMPLE_EAR比各向异性WLOP的结果更好地保留了边缘。

我们的L0最小化产生分段光滑点集,其中点直接位于锋利的边缘。然而,我们的投影算子产生尖锐特征附近的间隙,因为附近的点投射到边缘上,如图4和12所示。为了弥补尖锐特征附近的差距,我们使用LEAR算法的第二步(UpStPayPoEAR)对L0最小化的结果进行采样(黄等人,2013)。因为我们的方法更忠实地逼近点方向,我们的L0结果更加接近于点的位置,对我们的L0结果进行上采样可以比原始EAR保存更加尖锐的特征。在图中9和11,十二面体实例和修剪星例子分别由曲率和法线位置着色。我们展示了上采样过程前后的结果。与原始EAR方法相比,使用我们的L0结果的上采样产生更高质量的表面。在图9中,我们对点云进行了250%的上采样,而在图11中,我们对点云进行了1600%的上采样。图13和14显示更多的例子来证明我们的方法可以处理有或没有尖锐特征的表面。

图4:一个简单的演示我们的L0最小化方法。点由法线信息着色。第一行从左到右:一个嘈杂的点云(727点)和我们的L0方法的结果。第二行显示的结果,从侧面来看,每个阶段后对输入点云进行降噪。从左到右:由局部PCA计算的具有方向的初始噪声点云,法线估计后的结果,Point去噪后的结果,边缘恢复后的结果。

图5:L0方法与现有方法估计法线的比较。第一行是分别用1.5%、2.5%和3.5%高斯噪声破坏的输入数据。行2—6是双边滤波、RIMLS、各向异性WLOP、默认参数L0和具有精确参数的L0的结果。

图6:基于我们L0去噪法线的点位置恢复的现有方法比较。从左到右的第一行:输入点云被3.5%噪声(与图5相同的模型)破坏,双边滤波和各向异性WLOP使用局部PCA正常计算。第二行从左到右:L0,双边滤波和使用L0计算法线的各向异性WLOP。

图7:当点集有噪声时,点去噪阶段可能产生一个“交叉”伪影。

图8:边缘恢复的说明:将点P投影到平面和曲面的交点。

 

图9:我们展示了L0方法和原始EAR方法对UPSAMPLE_EAR的比较。图为(A)输入(7582点),(B)图9A上的EAR(42K点),(C)图9B的曲率着色,(D)图9A(7582点)上的L0最小化,(E)图9D(42K点)上的UPSAMPLE_EAR,以及(F)图9E的曲率着色。

图10:说明平滑参数ε和δ如何影响我们的L0最小化。我们应用L0最小化到具有不同的参数设置的干净的输入点集(54 3K点)。

图11:EAR与L0最小化的比较。顶行显示输入噪声点云和应用原始EAR的结果。最后一行显示L0最小化的结果和L0结果上的UPSAMPLE_EAR。

图2和3显示了我们的方法(L0最小化+UpSAMPayPayEAR)和各种最先进的特征点云去噪方法的比较,包括APSS(GueNebaod等人,2008)+RIMLS(OZTiRi等人,2009),WLOP(黄等人,2009),和EAR(AWLop+UpStPayPayEAR)(黄等人,2013)。在每种情况下,我们使用原始文献中所建议的参数,并遵循作者代码分布中提供的指令。对于我们的方法和EAR,我们分别在十二面体示例(图2)和扇盘示例(图3)中对点云进行250%和650%的上采样。在这些例子中,WLOP和EAR方法需要较大的邻域大小和平滑参数,从而导致图中的不好的结果。如果参数设置更大,小规模特征将被平滑出来;而如果参数被设置得更小,点云仍然会出现噪声。在每一个例子中,我们的方法提供更尖锐的边缘作为以前的方法,要么过度平滑尖锐的特征,要么在重建尖锐的特征表现不佳。

参数。我们的算法对其参数不太敏感。我们详细列出了我们在表1中使用参数的信息。在我们的方法中,我们主要有五个参数:用于法线估计的邻域numNN的大小、位置去噪和边缘恢复,以及用于法线估计(η)和位置去噪(δ)的L0最小化平滑参数。我们从一个小范围中选择这些参数,从我们所有示例中列出的默认参数开始。

图12:一个复杂的Iron Vise模型(161K点)上的L0最小化去噪过程的演示。第一行显示损坏的输入点集及其对应的法线着色。第二行和第三行分别从左到右分别显示2次和4次迭代后的结果:点去噪阶段后的结果,其对应的法线着色,边缘恢复阶段后的结果,以及其相应的法线着色。最后一行显示5次迭代后的最终结果及其对应的法线着色。

图13:对具有尖锐特征的模型进行去噪处理。从左到右:输入(125K点)、L0最小化和L0结果上的UPSAMPLE_EAR(764K点)

图14:对不具有尖锐特征的模型进行去噪处理。从左到右:输入(59K点)、L0最小化和L0结果上的UPSAMPLE_EAR(143K点)。

图15:将我们的方法应用到实际的点扫描,从左到右:输入扫描数据(99 K点),具有较小平滑参数的L0,和具有更大平滑参数的L0。

图16:各向异性LOP(AWLOP)在L0去噪点集中的应用。我们应用具有不同的邻域大小△到L0去噪点集(金字塔的顶视图)的AWLOP。第一行从左到右:L0去噪点集,在L0去噪点集上的AWLOP,其中△=2,△=1.5,和△=0.5。当平滑区域之间的间隙变小时,AWLOP在表示边缘方面表现较差。第二行显示了相应的放大细节。

图17:UPSAMPLE_EAR在L0上与在各向异性WLOP上的比较。第一行从左到右:L0上的UPSAMPLE_EAR和相应的放大细节。第二行从左到右:各向异性WLOP上的UPSAMPLE_EAR和相应的放大细节。

参数设置(表1)

 

参数

范围

法线估计中的numNN(k)

15-35(20)

位置去噪中的numNN(k)

5-15(10)

边缘修复中的numNN(k)

4-12(8)

法线估计(η)

0.05-0.1(0.075)

位置去噪(δ)

0.002-0.008(0.005)

一般来说,在存在大量噪声的情况下,需要更多校正去噪点集,因此,对于更高的锐度需要η、δ和numNN选择更大的值,然而当需要更多锐度时,较少的校正是优选的,因此参数ε、δ和numNN使用较小的值。因此,锐度和噪声量之间存在折衷。此外,邻域大小numNN需要足够小,以捕捉小规模的特征。为了在论文中产生结果,我们从所有参数的默认值开始,然后基于噪声的存在和特征的锐度对参数进行微调。虽然这样的调整有助于产生高质量的结果,但是我们的方法即使在默认参数下也能表现良好,如图5所示,在这里我们用默认值和调整后的参数来显示结果。

图10示出了参数如何影响我们的优化。我们将该方法应用于具有使用不同参数ε和δ的53K点的洁净点云,这表明增加ε和δ的值将逐渐消除细节。图15展示了利用不同平滑参数的L0方法处理的真实扫描模型。

收敛和运行时间。我们的L0优化收敛很快。通常,对于大点云或噪声水平较高时需要更多迭代。对于本文中所测试的所有模型,我们的优化在10次迭代中收敛,在5次迭代之后对位置或法线进行非常微小的改变。我们的测试是在3.16 GHz英特尔Xeon X54 60上运行的。表2显示了本文中所有模型的迭代次数和运行时间。

图18:我们的算法的一个局限性是边界在优化之后是不平滑的

运行时间和优化迭代(表2)

 

 

 

模型

Iters

时间

V型表面

727

1

0.20

十二面体

7582

3

1.33

修剪星形

24402

6

6.58

Fanddisk

27097

5

5.16

59485

3

6.07

犰狳

99416

3

9.52

卡特

125804

7

23.17

铁虎钳

161004

5

21.49

Budda

543652

2

18.34

局限性。我们的方法不能很好地处理边界,因为我们不在边界边缘产生干净曲线,如图18所示。此外,当噪声水平是极端的情况下我们的方法可能会失败。在这种情况下,初始PCA法线估计可以很差,以至于L0范数无法辨别特征与噪声,并且在这种情况下我们的结果倾向于过度平滑或过度锐化。

6.未来的工作和总结

我们的方法可以通过多种方式来改进。首先,所有参数,包括邻域大小,目前是固定的。我们相信,自动适应这些参数可以提高我们的方法的性能。其次,没有上采样过程,我们的方法产生尖锐特征附近的间隙。可以在位置优化和投影过程中添加排斥项,以便以更均匀的方式分发点。

总之,我们引入了一种有效的L0最小化方法来消除具有尖锐特征的点集。然后,该去噪点云可以用于进一步改善表面重建技术的性能。在计算机图形学中,越来越多的作品旨在增强稀疏性,我们相信我们的方法可以帮助启发其他问题的解决方案。

致谢

    我们感谢所有评论家的建设性意见。我们要感谢作者黄等人(2013)共享其真实扫描数据。我们还感谢AIM形状库和斯坦福资源库提供本文所使用的模型。本课题得到国家自然科学基金(2011CB302400)、国家自然科学基金(第61272019号)和深圳市科技计划(JCYJ201409031 1295962)的资助。

原文: https://pan.baidu.com/s/1E6dAIWL1OUiRDrdfhTlRPg
  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
利用骨骼进行的人体行为识别, 基于LOP 的行为识别,可以运行 (action recognition) 文件列表: actionletEnsemble-master actionletEnsemble-master\.gitignore actionletEnsemble-master\LICENSE actionletEnsemble-master\MSRAction3D actionletEnsemble-master\MSRAction3D\MSRAction3D_skeleton_features.mat actionletEnsemble-master\MSRAction3D\evaluate_on_MSR_action_3D.m actionletEnsemble-master\MSRDailyActivity3D actionletEnsemble-master\MSRDailyActivity3D\configDailyAcitity.m actionletEnsemble-master\MSRDailyActivity3D\evaluate_on_MSR_DailyAcitivity3D.m actionletEnsemble-master\MSRDailyActivity3D\extractAllLopFeatures.m actionletEnsemble-master\MSRDailyActivity3D\extractAllSkeletonFeatures.m actionletEnsemble-master\MSRDailyActivity3D\processOneSkeleton.m actionletEnsemble-master\MSRDailyActivity3D\trainClassifier.m actionletEnsemble-master\README.md actionletEnsemble-master\feature actionletEnsemble-master\feature\computeMotionField.m actionletEnsemble-master\feature\computePairwiseJointPositions.m actionletEnsemble-master\feature\computeSOPFeaturesSkeleton.m actionletEnsemble-master\feature\compute_motion_descriptors.m actionletEnsemble-master\feature\compute_motion_maps.m actionletEnsemble-master\feature\fftPyramid.m actionletEnsemble-master\feature\getSopFeature.m actionletEnsemble-master\feature\lopFeature.m actionletEnsemble-master\feature\lopFeatureSkeleton.m actionletEnsemble-master\feature\sopFeatureSkeleton.m actionletEnsemble-master\setup_path.m actionletEnsemble-master\util actionletEnsemble-master\util\ComputeMotion.mexw64 actionletEnsemble-master\util\ReadDepthBin.mexa64 actionletEnsemble-master\util\ReadDepthBin.mexw64 actionletEnsemble-master\util\iSaveX.m actionletEnsemble-master\util\normalizeFeature.m actionletEnsemble-master\util\predict.mexa64 actionletEnsemble-master\util\readDepthBin.m actionletEnsemble-master\util\readSkeleton.m actionletEnsemble-master\util\train.mexa64
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值