论文阅读Efficient Large-Scale Point Cloud Registration Using Loop Closures

论文提出了一种利用回环检测优化城市规模3D点云对齐的方法。通过分割点云并应用闭环闭合特性,结合GPS和IMU信息,实现了高效并行的配准,达到厘米级精度。实验表明,该方法能显著改善大范围点云地图的构建质量。
摘要由CSDN通过智能技术生成

论文题目:Efficient Large-Scale Point Cloud Registration Using Loop Closures
期刊:International Conference on 3d Vision 2015
来源:Microsoft research, Microsoft, Bing maps
摘要:
对齐大范围3D点云(可能被多个设备在不同时间捕获)是日益流行的应用(如3D模型构建和增强现实)的关键一步。对于非常大的数据集,传统的方法,如ICP,可能变得难以计算,或产生较差的结果。我们提出了一种快速的方法来精确对齐大量密集的三维点云,并将其应用于城市规模的数据集。该方法依赖于一种新颖的组合:1)基于所有设备采集数据的轨迹检测到的环路结构来划分点云,2)利用环路闭合特性来精确对齐每个子问题中的点云。最终基于多个闭环建图结果将整个地图构建表述为带闭形式解的最小二乘优化。实验结果显示,通过一个高效的并行架构,以厘米级精度对齐整个旧金山城市的3D点。

所提方法的现实意义:
1、 利用了激光slam中回环检测的确能够提高建图质量的前提条件,将大地图构建分解成小地图逐个优化的问题;
2、 S-GICP方法能够联合优化所有的点云;
3、 多个回环间能够并行的计算配准,因此能够减少计算时间和复杂度。

细节:
回环内的配准:利用GPS和IMU信息确定多个激光slam闭环后,使用GICP求解每个闭环的点云地图,根据点云采集特点,假设只包含小的旋转,首先只对平移参数t进行优化求解,收敛后再对t和R参数进行求解。
回环间的配准:回环间的配准根据相邻回环中公共的传感器姿态作为约束,使共用相机姿态保持一致:
在这里插入图片描述
进一步,使用GPS中的稳定部分(大概8%),作为传感器位置的锚点(anchor),一同参与优化:
在这里插入图片描述
使用最小二乘来估计最优的姿态,得到整个城市级别的点云地图。

实验:
回环分割:
在这里插入图片描述
GPS纠正:
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值