/**/ /** *单片机的快速开方 *一个 单片机开平方的快速算法(晓奇) * * 因为工作的需要,要在单片机上实现开根号的操作。目前开平方的方法大部分是用牛顿 * 迭代法。我在查了一些资料以后找到了一个比牛顿迭代法更加快速的方法。不敢独享,介 * 绍给大家,希望会有些帮助。 * * 1.原理 * 因为排版的原因,用pow(X,Y)表示X的Y次幂,用B[0],B[1],...,B[m-1]表示一个序列, * 其中[x]为下标。 * * 假设: * B[x],b[x]都是二进制序列,取值0或1。 * M = B[m-1]*pow(2,m-1) B[m-2]*pow(2,m-2) ... B[1]*pow(2,1) B[0]*pow * (2,0) * N = b[n-1]*pow(2,n-1) b[n-2]*pow(2,n-2) ... b[1]*pow(2,1) n[0]*pow * (2,0) * pow(N,2) = M * * (1) N的最高位b[n-1]可以根据M的最高位B[m-1]直接求得。 * 设 m 已知,因为 pow(2, m-1) <= M <= pow(2, m),所以 pow(2, (m-1)/2) <= N <= * pow(2, m/2) * 如果 m 是奇数,设m=2*k 1, * 那么 pow(2,k) <= N < pow(2, 1/2 k) < pow(2, k 1), * n-1=k, n=k 1=(m 1)/2 * 如果 m 是偶数,设m=2k, * 那么 pow(2,k) > N >= pow(2, k-1/2) > pow(2, k-1), * n-1=k-1,n=k=m/2 * 所以b[n-1]完全由B[m-1]决定。 * 余数 M[1] = M - b[n-1]*pow(2, 2*n-2) * * (2) N的次高位b[n-2]可以采用试探法来确定。 * 因为b[n-1]=1,假设b[n-2]=1,则 pow(b[n-1]*pow(2,n-1) b[n-1]*pow(2,n-2), * 2) = b[n-1]*pow(2,2*n-2) (b[n-1]*pow(2,2*n-2) b[n-2]*pow(2,2*n-4)), * 然后比较余数M[1]是否大于等于 (pow(2,2)*b[n-1] b[n-2]) * pow(2,2*n-4)。这种 * 比较只须根据B[m-1]、B[m-2]、...、B[2*n-4]便可做出判断,其余低位不做比较。 * 若 M[1] >= (pow(2,2)*b[n-1] b[n-2]) * pow(2,2*n-4), 则假设有效,b[n-2] = * 1; * 余数 M[2] = M[1] - pow(pow(2,n-1)*b[n-1] pow(2,n-2)*b[n-2], 2) = M[1] - * (pow(2,2) 1)*pow(2,2*n-4); * 若 M[1] < (pow(2,2)*b[n-1] b[n-2]) * pow(2,2*n-4), 则假设无效,b[n-2] = * 0;余数 M[2] = M[1]。 * * (3) 同理,可以从高位到低位逐位求出M的平方根N的各位。 * * 使用这种算法计算32位数的平方根时最多只须比较16次,而且每次比较时不必把M的各位逐 * 一比较,尤其是开始时比较的位数很少,所以消耗的时间远低于牛顿迭代法。 * * 2. 流程图 * (制作中,稍候再上) * * 3. 实现代码 * 这里给出实现32位无符号整数开方得到16位无符号整数的C语言代码。 * */ final public static int sqrt2( int M) ... { int N, i; int tmp, ttp; if (M == 0) return 0; N = 0; tmp = (M >> 30); M <<= 2; if (tmp > 1) ...{ N ++; tmp -= N; } for (i=15; i>0; i--) ...{ N <<= 1; tmp <<= 2; tmp += (M >> 30); ttp = N; ttp = (ttp<<1)+1; M <<= 2; if (tmp >= ttp) ...{ tmp -= ttp; N ++; } } return N; }