WebGL之旅(五)组合变换

组合变换,即对一个图形进行多次变换。

一 组合原理

比如,对图像g进行一次平移,然后进行一次缩放,求最终的得到图像g。

那么:

平移后的坐标t = 平移矩阵 x 原始坐标g
缩放后的G = 缩放矩阵 x 平移后的坐标t

所以:

缩放后的G = 缩放矩阵 x (平移矩阵 x 原始坐标g) = (缩放矩阵 x 平移矩阵) x 原始坐标g

可见,对于多次变换,可以将变换矩阵相乘得到一个最终的矩阵(叫模型矩阵),然后传给顶点着色器做最终的运算。

示例

/**
 * 复合变换
 * xu.lidong@qq.com
 * */

// 顶点着色器源码
var vertexShaderSrc = `
attribute vec4 a_Position;// 接收传入位置坐标,必须声明为全局
uniform mat4 u_Mat;// 旋转矩阵
void main(){
    gl_Position = u_Mat * a_Position;
}`;

// 片段着色器源码
var fragmentShaderSrc = `
void main(){
    gl_FragColor = vec4(1.0, 1.0, 1.0, 1.0);// gl_FragColor 内置变量,表示片元颜色,必须赋值
}`;

// 初始化使用的shader
function initShader(gl) {
    var vertexShader = gl.createShader(gl.VERTEX_SHADER);// 创建顶点着色器
    gl.shaderSource(vertexShader, vertexShaderSrc);// 绑定顶点着色器源码
    gl.compileShader(vertexShader);// 编译定点着色器

    var fragmentShader = gl.createShader(gl.FRAGMENT_SHADER);// 创建片段着色器
    gl.shaderSource(fragmentShader, fragmentShaderSrc);// 绑定片段着色器源码
    gl.compileShader(fragmentShader);// 编译片段着色器

    var shaderProgram = gl.createProgram();// 创建着色器程序
    gl.attachShader(shaderProgram, vertexShader);// 指定顶点着色器
    gl.attachShader(shaderProgram, fragmentShader);// 指定片段着色色器
    gl.linkProgram(shaderProgram);// 链接程序
    gl.useProgram(shaderProgram);//使用着色器

    gl.program = shaderProgram;
}

function main() {
    var canvas = document.getElementById("container");
    var gl = canvas.getContext("webgl") || canvas.getContext("experimental-webgl");
    initShader(gl);// 初始化着色器
    var n = initVertexBuffers(gl);// 初始化顶点

    // 平移矩阵,列主序
    var tran = getTranslationMatrix(0.5, 0.5, 0.0);

    // 旋转矩阵,列主序
    var rot = getRotationMatrix(Math.PI * 0.5, 0.0, 0.0, 1.0);

    // 缩放矩阵,列主序
    var scale = getScaleMatrix(0.5, 0.5, 1.0);

    var mat = multiMatrix44(scale, tran);
    mat = multiMatrix44(mat, rot);
    var u_Mat = gl.getUniformLocation(gl.program, 'u_Mat');
    gl.uniformMatrix4fv(u_Mat, false, mat);

    gl.clearColor(0.0, 0.0, 0.0, 1.0);// 指定清空canvas的颜色
    gl.clear(gl.COLOR_BUFFER_BIT);// 清空canvas
    gl.drawArrays(gl.TRIANGLES, 0, n);
}

function initVertexBuffers(gl) {
    var vertices = new Float32Array([
        0, 0.5,
        -0.5, -0.5,
        0.5, -0.5,
    ]);

    var vertexBuffer = gl.createBuffer();// 创建缓冲区对象
    gl.bindBuffer(gl.ARRAY_BUFFER, vertexBuffer);// 将缓冲区对象绑定到目标
    gl.bufferData(gl.ARRAY_BUFFER, vertices, gl.STATIC_DRAW);// 向缓冲区中写入数据

    var a_Position = gl.getAttribLocation(gl.program, "a_Position");// 获取a_Position变量
    gl.vertexAttribPointer(a_Position, 2, gl.FLOAT, false, 0, 0);// 将缓冲区对象分配给a_Position
    gl.enableVertexAttribArray(a_Position);// 链接a_Position与分配给他的缓冲区对象

    return vertices.length / 2;
}

/**
 * 由平移向量获取平移矩阵
 * */
function getTranslationMatrix(x, y, z) {
    return new Float32Array([
        1.0, 0.0, 0.0, 0.0,
        0.0, 1.0, 0.0, 0.0,
        0.0, 0.0, 1.0, 0.0,
        x, y, z, 1.0,
    ]);
}

/**
 * 由旋转弧度和旋转轴获取旋转矩阵
 * */
function getRotationMatrix(rad, x, y, z) {
    if (x > 0) {
        // 绕x轴的旋转矩阵
        return new Float32Array([
            1.0, 0.0, 0.0, 0.0,
            0.0, Math.cos(rad), -Math.sin(rad), 0.0,
            0.0, Math.sin(rad), Math.cos(rad), 0.0,
            0.0, 0.0, 0.0, 1.0,
        ]);
    } else if (y > 0) {
        // 绕y轴的旋转矩阵
        return new Float32Array([
            Math.cos(rad), 0.0, -Math.sin(rad), 0.0,
            0.0, 1.0, 0.0, 0.0,
            Math.sin(rad), 0.0, Math.cos(rad), 0.0,
            0.0, 0.0, 0.0, 1.0,
        ]);
    } else if(z > 0) {
        // 绕z轴的旋转矩阵
        return new Float32Array([
            Math.cos(rad), Math.sin(rad), 0.0, 0.0,
            -Math.sin(rad), Math.cos(rad), 0.0, 0.0,
            0.0, 0.0, 1.0, 0.0,
            0.0, 0.0, 0.0, 1.0,
        ]);
    } else {
        // 没有指定旋转轴,报个错,返回一个单位矩阵
        console.error("error: no axis");
        return new Float32Array([
            1.0, 0.0, 0.0, 0.0,
            0.0, 1.0, 0.0, 0.0,
            0.0, 0.0, 1.0, 0.0,
            0.0, 0.0, 0.0, 1.0,
        ]);
    }
}

/**
 * 由缩放因子获取缩放矩阵
 * */
function getScaleMatrix(xScale, yScale, zScale) {
    return new Float32Array([
        xScale, 0.0, 0.0, 0.0,
        0.0, yScale, 0.0, 0.0,
        0.0, 0.0, zScale, 0.0,
        0.0, 0.0, 0.0, 1.0,
    ]);
}

/**
 * 1 x 1 向量点乘
 * */
function dotMultiVector(v1, v2) {
    var res = 0;
    for (var i = 0; i < v1.length; i++) {
        res += v1[i] * v2[i];
    }
    return res;
}

/**
 * 4 x 4 矩阵的转置
 * */
function transposeMatrix(mat) {
    var res = new Float32Array(16);
    for (var i = 0; i < 4; i++) {
        for (var j = 0; j < 4; j++) {
            res[i * 4 + j] = mat[j * 4 + i];
        }
    }
    return res;
}

/**
 * 4 x 4 矩阵乘法
 * */
function multiMatrix44(m1, m2) {
    var mat1 = transposeMatrix(m1);
    var mat2 = transposeMatrix(m2);

    var res = new Float32Array(16);
    for (var i = 0; i < 4; i++) {
        var row = [mat1[i * 4], mat1[i * 4 + 1], mat1[i * 4 + 2], mat1[i * 4 + 3]];
        for (var j = 0; j < 4; j++) {
            var col = [mat2[j], mat2[j + 4], mat2[j + 8], mat2[j + 12]];
            res[i * 4 + j] = dotMultiVector(row, col);
        }
    }
    return transposeMatrix(res);
}

如图:

这里写图片描述

这里主要涉及到一个向量乘法的运算transposeMatrix。

因为是用列主序表示的,所以想把列主序转转置成行主序,然后在计算,计算完之后再转成列主序返回。


WebGL之旅:


参考书:《WebGL编程指南》

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值