CVPR2020--ATSS: Adaptive Training Sample Selection

CVPR2020论文ATSS探讨了基于锚点和无锚点目标检测器的差距,通过自适应训练样本选择来改善。研究发现,正负样本的定义是两者性能差异的关键。ATSS方法根据目标统计特征自动选择正负样本,提升了anchor-based和anchor-free检测器的性能,减少了超参数的影响。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

论文PDF百度网盘链接:链接:https://pan.baidu.com/s/1N7ezswi26GZ-Zu0isepw3Q 
提取码:2ghe 
 

Bridging the Gap Between Anchor-based and Anchor-free Detection via Adaptive Training Sample Selection

ATSS为CVPR2020中的一篇论文,论文题目如上所示,大体意思为通过自适应选择训练样本来弥补基于锚和无锚检测器的差距。因为目前大多数目标检测成果都是在anchor-based的基础上产生的,但之前刚好读过anchor-free的论文FCOS,意识到anchor-free也是有很大的优势的,所以刚好借此机会更加深入的了解这两种检测方法的本质区别,同时学习下作者的改进。

  • 研究内容

近年来,anchor-based检测器一直主导着目标检测,同时anchor-free检测器由于FPN和Focal Loss的引入而受到广泛关注。本文首先指出anchor-based检测与anchor-free检测的本质区别是在于如何定义正、负训练样本,从而导致两者之间的性能差距。如果他们在训练中对正样本和负样本采用相同的定义,无论从一个anchor还是一个point回归,最终的表现都没有明显的差异。由此可见,如何选取正、负训练样本对当前目标检测具有重要意义。然后,作者提出了一种自适应训练样本选择(ATSS

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值