YOLOV8如何训练自己的数据集???

本文介绍了如何使用YOLOV8框架对自定义数据集进行训练,包括数据准备(创建Annotations和ImageSets文件夹,使用makeTxt.py进行数据划分,voc_label.py生成类别标签),以及如何建立yaml配置文件进行模型训练和测试。
摘要由CSDN通过智能技术生成

YOLOV8 训练自己的数据集

第一步:数据准备

在yolov8中建立datasets文件夹,然后建立数据集文件夹mydata。

        在mydata文件夹中建立Annotations文件夹(存放VOC格式下的自己的xml文件)、images文件夹(存放自己的原始标记图像)、ImageSets文件夹(空)。

        打开pycharmmydata目录下建立一个名为makeTxt.py文件、一个名为voc_label.py文件。

        makeTxt.py给数据分类trian val test。运行后ImageSets文件夹生成四个txt。

        voc_label.py运行后生成labels文件夹和三个txt。修改代码中的classes使用自己的类。

voc_label.py代码:

import xml.etree.ElementTree as ET
import pickle
import os
from os import listdir, getcwd
from os.path import join

sets = [('train'), ('test'), ('val')]

classes = ["zebra", "panda", "elephant", "tiger", "cat", "dolphin", "whale", "shark", "goldfish", "starfish",
           "muskmelon", "lemon", "mango", "strawberry", "Chinese cabbage", "eggplant", "potato", "apple", "balsam pear",
           "pumpkin"]


def convert(size, box):
    dw = 1. / (size[0])
    dh = 1. / (size[1])
    x = (box[0] + box[1]) / 2.0 - 1
    y = (box[2] + box[3]) / 2.0 - 1
    w = box[1] - box[0]
    h = box[3] - box[2]
    x = x * dw
    w = w * dw
    y = y * dh
    h = h * dh
    return (x, y, w, h)


def convert_annotation(image_id):
    in_file = open('Annotations/%s.xml' % (image_id), encoding='utf-8')
    out_file = open('labels/%s.txt' % (image_id), 'w', encoding='utf-8')
    tree = ET.parse(in_file)
    root = tree.getroot()
    size = root.find('size')
    w = int(size.find('width').text)
    h = int(size.find('height').text)

    for obj in root.iter('object'):
        # difficult = obj.find('difficult').text
        cls = obj.find('name').text
        # if cls not in classes or int(difficult)==1:

        if cls not in classes:
            continue
        cls_id = classes.index(cls)
        xmlbox = obj.find('bndbox')
        b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text),
             float(xmlbox.find('ymax').text))
        bb = convert((w, h), b)
        out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')


wd = getcwd()

for image_set in sets:
    if not os.path.exists('labels/'):
        os.makedirs('labels/')
    image_ids = open('ImageSets/%s.txt' % (image_set)).read().strip().split()
    list_file = open('%s.txt' % (image_set), 'w', encoding='utf-8')
    for image_id in image_ids:
        list_file.write('%s/images/%s.jpg\n' % (wd, image_id))
        convert_annotation(image_id)
    list_file.close()

makeTxt.py代码:

import os
import random

trainval_percent = 0.1
train_percent = 0.9
xmlfilepath = './Annotations'
txtsavepath = './ImageSets'
total_xml = os.listdir(xmlfilepath)

num = len(total_xml)
list = range(num)
tv = int(num * trainval_percent)
tr = int(tv * train_percent)
trainval = random.sample(list, tv)
train = random.sample(trainval, tr)

ftrainval = open('./ImageSets/trainval.txt', 'w')
ftest = open('./ImageSets/test.txt', 'w')
ftrain = open('./ImageSets/train.txt', 'w')
fval = open('./ImageSets/val.txt', 'w')

for i in list:
    name = total_xml[i][:-4] + '\n'
    if i in trainval:
        ftrainval.write(name)
        if i in train:
            ftest.write(name)
        else:
            fval.write(name)
    else:
        ftrain.write(name)

ftrainval.close()
ftrain.close()
fval.close()
ftest.close()

shu.yaml代码:

train: C:/Users/Administrator/Desktop/ultralytics-main/datasets/mydata/train.txt
val: C:/Users/Administrator/Desktop/ultralytics-main/datasets/mydata/val.txt


# Classes
names:
  0: zebra
  1: panda
  2: elephant
  3: tiger

        labels文件里的txt就是我们使用labelimg标注时数据为YOLO格式。至此数据准备工作完成,开始训练。

第二步:训练

建立一个yaml文件

shu.yaml

trainval都写绝对路径

打开pycharm找到终端terminal命令行输入命令:yolo train data=C:\Users\Administrator\Desktop\ultralytics-main\datasets\shu.yaml model=yolov8n.pt epochs=100 lr0=0.01

至此训练完成。 runs中生成训练结果和训练模型。

训练结果分析

第三步、测试

使用训练后的模型进行测试。

测试指令:yolo predict model=runs/detect/train26/weights/best.pt source=datasets/mydata/images/0214.jpg

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值