1. 项目背景
为了实现国际化、综合化、打造最佳财富管理银行,提升零售银行核心竞 争力,XX银行正式启动了由个金部牵头,零售信贷、信用卡中心、技术 管理、软件开发等部门参与的“零售客户信息管理及精准营销项目”。“精准营 销”是指银行通过数据分析,在恰当时机,通过恰当渠道,将恰当产品提供给 恰当客户的系统流程。 本项目分为三个阶段,第一阶段为 POC 试点,主要工作任务是做两个 EBM 事件和一个数据挖掘模型,验证采用数据分析的方法能提高名单获取的精确性, 提高营销成功率。第二阶段包括客户细分,客户获取,交叉销售等几个模型。 第三阶段包括房贷提前还款模型,基金客户获取模型,保险客户获取模型等几 个模型。下面重点介绍保险获取模型的开发过程。 目前交行银行已经在执行保险外呼营销活动,但名单获取方式是比较简单 的业务规则,营销成功率比较低。因此,交行迫切需要采用更先进的技术手段 获取高响应率的客户。 在本项目中,采用数据挖掘技术构建保险客户获取预测模型,通过大量的 历史数据发现购买保险产品的客户特征,选择最有可能购买保险产品的客户进 行营销,提高营销成功率。
2.业务问题定义与分析
2.1.业务问题定义
随着市场的竞争,客户管理由粗放式方式逐渐向精细化过渡,为了实现营 销目标快速精准定位,需要向恰当的客户营销恰当的产品。客户获取就是为了 满足营销精准定位而提出来的一种数据挖掘应用。 客户获取通过响应预测模型来实现。响应预测是通过分析客户的基本信息 及历史交易行为,来预测未来可能购买某种产品的可能性,从而向高响应率客 户针对性地营销该特定产品。
客户获取主要实现以下几个目的:
产