一个典型的银行精准营销客群挖掘项目总结(1)

文章讲述了XX银行启动的零售客户信息管理项目,重点介绍了保险获取模型的开发,通过数据挖掘技术分析客户历史行为,以提高营销成功率。项目分为三个阶段,第二阶段重点关注客户细分和保险、基金等产品获取模型。使用SAS中的分类预测算法进行建模,以提高保险产品的营销效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 项目背景

       为了实现国际化、综合化、打造最佳财富管理银行,提升零售银行核心竞 争力,XX银行正式启动了由个金部牵头,零售信贷、信用卡中心、技术 管理、软件开发等部门参与的“零售客户信息管理及精准营销项目”。“精准营 销”是指银行通过数据分析,在恰当时机,通过恰当渠道,将恰当产品提供给 恰当客户的系统流程。 本项目分为三个阶段,第一阶段为 POC 试点,主要工作任务是做两个 EBM 事件和一个数据挖掘模型,验证采用数据分析的方法能提高名单获取的精确性, 提高营销成功率。第二阶段包括客户细分,客户获取,交叉销售等几个模型。 第三阶段包括房贷提前还款模型,基金客户获取模型,保险客户获取模型等几 个模型。下面重点介绍保险获取模型的开发过程。 目前交行银行已经在执行保险外呼营销活动,但名单获取方式是比较简单 的业务规则,营销成功率比较低。因此,交行迫切需要采用更先进的技术手段 获取高响应率的客户。 在本项目中,采用数据挖掘技术构建保险客户获取预测模型,通过大量的 历史数据发现购买保险产品的客户特征,选择最有可能购买保险产品的客户进 行营销,提高营销成功率。

2.业务问题定义与分析

2.1.业务问题定义

       随着市场的竞争,客户管理由粗放式方式逐渐向精细化过渡,为了实现营 销目标快速精准定位,需要向恰当的客户营销恰当的产品。客户获取就是为了 满足营销精准定位而提出来的一种数据挖掘应用。 客户获取通过响应预测模型来实现。响应预测是通过分析客户的基本信息 及历史交易行为,来预测未来可能购买某种产品的可能性,从而向高响应率客 户针对性地营销该特定产品。

       客户获取主要实现以下几个目的:

        产

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

xusy-it

独立咨询,原创不易,感谢支持

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值