triplet改进和变种

1.一开始是FaceNet

2.一个重要的改进:image-based, Ding etal.

3.对于样本挑选的改进:

1)hard samples: hard positive 和hard negative (In Defense of Triplet Loss for person Re-Identification)

2) hard negative (cvpr2016,车辆检索)

3) minize the distance between those samples with the same id (cvpr 2016, person re-identification by multi-channel parts-based cnn with improved triplet loss function)

4) multiple negative (nips 2016)

5) 四元组,cvpr 2017: Beyond triplet loss: a deep quadruplet network for person re-identification

6) 五元组,cvpr 2016

7) soft-margin (In Defense of Triplet Loss for person Re-Identification)

8) Litfed Embedding Loss and the improved version. (In Defense of Triplet Loss for person Re-Identification, Deep Metric Learning via Lifted Structured Feature Embedding)

9) 认为anchor和positive地位同等,原来的标准triplet把negive推向远离anchor,没有保证也远离positive。因此,考虑向量的运算。Deep Metric Learning with Improved Triplet Loss for Face Clustering in video.

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值