【Legged Gym】Legged Gym训练参数详解与自定义任务实现

Legged Gym训练参数详解与自定义任务实现

在进行机器人强化学习训练时,Legged Gym 提供了一套灵活的参数配置系统,以适应不同的训练需求和环境。本文将详细解析 Legged Gym 训练时的关键参数,并特别强调如何通过自定义 task 来实现新任务的训练。同时,也会解释 rl_devicesim_device 的赋值方法及其区别。

1. 参数详解

1.1. 任务与实验配置

  • --task: 指定训练任务的类型,如 anymal_c_flat。这是训练过程中机器人需要完成的任务。用户可以通过编写自定义的 task 类来实现新的任务。
  • --resume: 布尔值,用于决定是否从检查点恢复训练。
  • --experiment_name: 实验的名称,用于标识不同的实验配置。
  • --run_name: 运行的名称,用于区分同一实验下的不同运行。
  • --load_run: 指定恢复训练时加载的运行名称。如果设置为 -1,则加载最近的运行。
  • --checkpoint: 指定加载的模型检查点编号。如果设置为 -1,则加载最近的检查点。

1.2. 显示与并行配置

  • --headless: 布尔值,强制关闭显示,适用于无头服务器环境。
  • --horovod: 布尔值,使用 Horovod 进行多 GPU 训练。

1.3. 设备配置

  • --rl_device: 指定强化学习算法使用的设备,如 cuda:0。这通常是一个 GPU,但也可以使用 CPU。
  • --num_envs: 要创建的环境数量。
  • --seed: 随机种子,用于确保实验的可重复性。
  • --max_iterations: 训练的最大迭代次数。
  • --sim_device: 指定模拟环境使用的设备,如 cuda:0。这通常是一个 GPU,但也可以使用 CPU。

2. 自定义任务实现

Legged Gym 允许用户通过自定义 task 来实现新的任务。task 类定义了机器人在环境中需要完成的任务目标和评估标准。要创建自定义任务,你需要继承 Legged Gym 的 Task 基类,并实现必要的方法,如 __init__resetstep。这些方法定义了任务的初始化、重置和每个时间步的行为。

3. 参数读取代码(位于legged_gym/legged_gym/utils/helpers.py)

def get_args(custom_args=[]):
    custom_parameters = [
        {
   "name": "--task", "type": str, "default": "anymal_c_flat", "help": "Resume training or start testing from a checkpoint. Overrides config file if provided."
### Ubuntu 20.04 安装并配置 Legged Gym 机器人模拟环境 #### 虚拟环境准备 为了确保开发环境的独立性和稳定性,在Ubuntu 20.04上安装Legged Gym前需先设置好虚拟环境。此过程涉及创建一个新的Conda环境,并命名为`isaac`,这一步骤已在先前的操作指南中提及[^1]。 ```bash conda create -n isaac python=3.8 conda activate isaac ``` #### 安装 Isaac Gym 和相关组件 由于Legged Gym依赖于Isaac Gym作为其底层支持库之一,因此需要按照官方指导完成Isaac Gym的部署工作。具体操作包括下载对应的预览版压缩包并执行解压命令,随后进入指定路径下利用pip工具来安装必要的Python模块及其关联依赖项[^5]。 ```bash cd isaacgym/python pip install -e . ``` #### 配置 Legged Gym 及其他必要软件包 紧接着转向Legged Gym本身的搭建环节,主要分为两大部分:一是克隆项目仓库至本地;二是依据特定标签版本号检出代码分支以便后续定制化修改或功能扩展。除此之外,还需额外引入一些辅助性的第三方库如NumPy用于数值计算以及TensorBoard负责可视化训练日志记录等功能。 ```bash cd rsl_rl git checkout v1.0.2 pip install -e . cd ../legged_gym pip install -e . pip install numpy==1.23.5 pip install tensorboard ``` 以上步骤完成后即可顺利启动Legged Gym所提供的各类实验案例程序,进一步探索基于强化学习算法驱动下的多足行走机器人的运动控制策略研究等工作。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值