使用小尺寸大模型和 Dify 清洗数据:Qwen 2.5 7B

本篇文章,我们聊聊如何使用最近发布的 Qwen 2.5 7B 模型来做日常低成本的数据清理工作。

写在前面

这个月好像比上个月还忙,去了很多地方,见了很多朋友。

之前云栖大会上说要写几篇 Qwen 相关的实践,一直没有时间,趁着今天出行前的空档,分享一篇之前使用小模型的经验。

简单好用的 AI 流水线

本篇文章使用的模型是千问 2.5 版本的 7B 模型的官方量化版:Qwen2.5-7B-Instruct-GPTQ-Int4,因为我们要处理的数据任务非常简单,追求效率第一,所以即使使用较小参数量的模型,搭配它的量化版本,也问题不大,在不优化显存占用的情况下大概 17G vRAM(可优化)。

如果你对纯 CPU 推理或者端侧硬件推理感兴趣,可以翻阅之前的文章,更换推理方式。

完整的流水线配置,在文末配置处,有需要自取。

准备工作

本文的准备工作很简单,如果你是我的老读者,已经有顺手抄起来就能使用的 Dify 和 Docker,那么只需要跟着步骤下载必要的 Docker 镜像和你想使用的模型,最后选择一个想要清理的数据源即可。

Docker 环境的准备

如果你已经安装了 Docker ,那么可以跳过这个小节。

如果你还没有安装 Docker,不论你使用的是 Windows、Linux、macOS,都可以相对快速简单的完成 Docker 的安装和简单配置。

Dify 的安装使用

关于 Dify 的安装和使用,在之前 Dify 相关的文章[4]中有提到过,所以就不再赘述。

完成安装之后,在 Dify 主界面中创建一个新的应用,后文中使用。

在 Dify 中创建一个应用

上篇文章提到过,考虑到开箱即用,我在写一个小工具,来更简单的完成 Dify 的安装和组件选配,目前完成了除前端界面之外的部分,或许后面的文章里,这块会更加简单。

模型下载

你可以从你喜欢的社区,来快速下载本文中使用的模型,或者替换为你觉得不错的其他模型:

•魔搭:Qwen/Qwen2.5-7B-Instruct-GPTQ-Int4[5]•HuggingFace: Qwen/Qwen2.5-7B-Instruct[6]

如果你在国内,我建议你使用魔搭来进行下载,具体可参考《节省时间:AI 模型靠谱下载方案汇总[7]》这篇文章中的方法。

PyTorch Docker 镜像准备

我使用的模型是下面的 PyTorch 社区镜像,因为基于这个镜像,我们将能够极大简化 VLLM 组件的安装。

docker pull pytorch/pytorch:2.4.0-cuda12.1-cudnn9-runtime

当我们完成模型和 Docker 镜像下载之后,在模型所在目录,执行下面的命令,可以得到一个交互式的终端:

docker run --gpus=all  -it -v `pwd`/Qwen:/models/Qwen -p 8000:8000 pytorch/pytorch:2.4.0-cuda12.1-cudnn9-runtime bash

执行下面的命令,来到工作目录:

cd /models

VLLM

因为我们要处理大量数据,所以数据的处理效率非常关键,除了选择小模型之外,使用合理的缓存机制,能够大幅提升模型吞吐,VLLM 能够提供单卡 500 左右的吞吐,对于我们处理数据非常友好。

在进入交互式终端后,我们可以执行下面的命令,先将 Python PyPi 软件源换为国内更快的清华源:

python -m pip install --upgrade pip  
pip config set global.index-url https://mirrors.tuna.tsinghua.edu.cn/pypi/web/simple

然后,执行下面的命令,快速的完成 vllm 的安装:

pip install vllm

等到 vllm 安装完毕之后,我们执行下面的命令,启动一个监听 8000 端口的兼容 OpenAI API 的 Web 服务:

vllm serve Qwen/Qwen2.5-7B-Instruct-GPTQ-Int4

执行命令后,我们将看到一大堆日志,包括服务启动,模型加载等等:

# vllm serve Qwen/Qwen2.5-7B-Instruct-GPTQ-Int4  
  
INFO 09-3006:47:30 api_server.py:526] vLLM API server version 0.6.1.dev238+ge2c6e0a82  
INFO 09-3006:47:30 api_server.py:527] args:Namespace(model_tag='Qwen/Qwen2.5-7B-Instruct-GPTQ-Int4', config='', host=None, port=8000, uvicorn_log_level='info', allow_credentials=False, allowed_origins=['*'], allowed_methods=['*'], allowed_headers=['*'], api_key=None, lora_modules=None, prompt_adapters=None, chat_template=None, response_role='assistant', ssl_keyfile=None, ssl_certfile=None, ssl_ca_certs=None, ssl_cert_reqs=0, root_path=None, middleware=[], return_tokens_as_token_ids=False, disable_frontend_multiprocessing=False, enable_auto_tool_choice=False, tool_call_parser=None, model='Qwen/Qwen2.5-7B-Instruct-GPTQ-Int4', tokenizer=None, skip_tokenizer_init=False, revision=None, code_revision=None, tokenizer_revision=None, tokenizer_mode='auto', trust_remote_code=False, download_dir=None, load_format='auto', config_format='auto', dtype='auto', kv_cache_dtype='auto', quantization_param_path=None, max_model_len=None, guided_decoding_backend='outlines', distributed_executor_backend=None, worker_use_ray=False, pipeline_parallel_size=1, tensor_parallel_size=1, max_parallel_loading_workers=None, ray_workers_use_nsight=False, block_size=16, enable_prefix_caching=False, disable_sliding_window=False, use_v2_block_manager=False, num_lookahead_slots=0, seed=0, swap_space=4, cpu_offload_gb=0, gpu_memory_utilization=0.9, num_gpu_blocks_override=None, max_num_batched_tokens=None, max_num_seqs=256, max_logprobs=20, disable_log_stats=False, quantization=None, rope_scaling=None, rope_theta=None, enforce_eager=False, max_context_len_to_capture=None, max_seq_len_to_capture=8192, disable_custom_all_reduce=False, tokenizer_pool_size=0, tokenizer_pool_type='ray', tokenizer_pool_extra_config=None, limit_mm_per_prompt=None, mm_processor_kwargs=None, enable_lora=False, max_loras=1, max_lora_rank=16, lora_extra_vocab_size=256, lora_dtype='auto', long_lora_scaling_factors=None, max_cpu_loras=None, fully_sharded_loras=False, enable_prompt_adapter=False, max_prompt_adapters=1, max_prompt_adapter_token=0, device='auto', num_scheduler_steps=1, multi_step_stream_outputs=False, scheduler_delay_factor=0.0, enable_chunked_prefill=None, speculative_model=None, speculative_model_quantization=None, num_speculative_tokens=None, speculative_draft_tensor_parallel_size=None, speculative_max_model_len=None, speculative_disable_by_batch_size=None, ngram_prompt_lookup_max=None, ngram_prompt_lookup_min=None, spec_decoding_acceptance_method='rejection_sampler', typical_acceptance_sampler_posterior_threshold=None, typical_acceptance_sampler_posterior_alpha=None, disable_logprobs_during_spec_decoding=None, model_loader_extra_config=None, ignore_patterns=[], preemption_mode=None, served_model_name=None, qlora_adapter_name_or_path=None, otlp_traces_endpoint=None, collect_detailed_traces=None, disable_async_output_proc=False, override_neuron_config=None, disable_log_requests=False, max_log_len=None, disable_fastapi_docs=False, dispatch_function=<function serve at 0x74954f205760>)  
INFO 09-3006:47:30 api_server.py:164]Multiprocessing frontend to use ipc:///tmp/7c3171d1-993e-4f8f-a466-95f0877a42a5for IPC Path.  
INFO 09-3006:47:30 api_server.py:177]Started engine process with PID 45  
INFO 09-3006:47:30 gptq_marlin.py:107]The model is convertible to gptq_marlin during runtime.Using gptq_marlin kernel.  
INFO 09-3006:47:32 gptq_marlin.py:107]The model is convertible to gptq_marlin during runtime.Using gptq_marlin kernel.  
INFO 09-3006:47:32 llm_engine.py:226]Initializing an LLM engine (v0.6.1.dev238+ge2c6e0a82) with config: model='Qwen/Qwen2.5-7B-Instruct-GPTQ-Int4', speculative_config=None, tokenizer='Qwen/Qwen2.5-7B-Instruct-GPTQ-Int4', skip_tokenizer_init=False, tokenizer_mode=auto, revision=None, override_neuron_config=None, rope_scaling=None, rope_theta=None, tokenizer_revision=None, trust_remote_code=False, dtype=torch.float16, max_seq_len=32768, download_dir=None, load_format=LoadFormat.AUTO, tensor_parallel_size=1, pipeline_parallel_size=1, disable_custom_all_reduce=False, quantization=gptq_marlin, enforce_eager=False, kv_cache_dtype=auto, quantization_param_path=None, device_config=cuda, decoding_config=DecodingConfig(guided_decoding_backend='outlines'), observability_config=ObservabilityConfig(otlp_traces_endpoint=None, collect_model_forward_time=False, collect_model_execute_time=False), seed=0, served_model_name=Qwen/Qwen2.5-7B-Instruct-GPTQ-Int4, use_v2_block_manager=False, num_scheduler_steps=1, multi_step_stream_outputs=False, enable_prefix_caching=False, use_async_output_proc=True, use_cached_outputs=True, mm_processor_kwargs=None)  
INFO 09-3006:47:33 model_runner.py:1014]Starting to load model Qwen/Qwen2.5-7B-Instruct-GPTQ-Int4...  
INFO 09-3006:47:33 gptq_marlin.py:198]UsingMarlinLinearKernelforGPTQMarlinLinearMethod  
Loading safetensors checkpoint shards:0%Completed|0/2[00:00<?,?it/s]  
Loading safetensors checkpoint shards:50%Completed|1/2[00:00<00:00,6.33it/s]  
Loading safetensors checkpoint shards:100%Completed|2/2[00:00<00:00,3.06it/s]  
Loading safetensors checkpoint shards:100%Completed|2/2[00:00<00:00,3.32it/s]  
  
INFO 09-3006:47:34 model_runner.py:1025]Loading model weights took 5.1810 GB  
INFO 09-3006:47:37 gpu_executor.py:122]# GPU blocks: 11455, # CPU blocks: 4681  
INFO 09-3006:47:39 model_runner.py:1329]Capturing the model for CUDA graphs.This may lead to unexpected consequences if the model is not static.To run the model in eager mode,set'enforce_eager=True' or use '--enforce-eager'in the CLI.  
INFO 09-3006:47:39 model_runner.py:1333] CUDA graphs can take additional 1~3GiB memory per GPU.If you are running out of memory, consider decreasing `gpu_memory_utilization` or enforcing eager mode.You can also reduce the `max_num_seqs` as needed to decrease memory usage.  
INFO 09-3006:47:46 model_runner.py:1456]Graph capturing finished in7 secs.  
INFO 09-3006:47:46 api_server.py:230] vLLM to use /tmp/tmpjt18oh55 as PROMETHEUS_MULTIPROC_DIR  
WARNING 09-3006:47:46 serving_embedding.py:189] embedding_mode is False.Embedding API will not work.  
INFO 09-3006:47:46 launcher.py:19]Available routes are:  
INFO 09-3006:47:46 launcher.py:27]Route:/openapi.json,Methods: GET, HEAD  
INFO 09-3006:47:46 launcher.py:27]Route:/docs,Methods: GET, HEAD  
INFO 09-3006:47:46 launcher.py:27]Route:/docs/oauth2-redirect,Methods: GET, HEAD  
INFO 09-3006:47:46 launcher.py:27]Route:/redoc,Methods: GET, HEAD  
INFO 09-3006:47:46 launcher.py:27]Route:/health,Methods: GET  
INFO 09-3006:47:46 launcher.py:27]Route:/tokenize,Methods: POST  
INFO 09-3006:47:46 launcher.py:27]Route:/detokenize,Methods: POST  
INFO 09-3006:47:46 launcher.py:27]Route:/v1/models,Methods: GET  
INFO 09-3006:47:46 launcher.py:27]Route:/version,Methods: GET  
INFO 09-3006:47:46 launcher.py:27]Route:/v1/chat/completions,Methods: POST  
INFO 09-3006:47:46 launcher.py:27]Route:/v1/completions,Methods: POST  
INFO 09-3006:47:46 launcher.py:27]Route:/v1/embeddings,Methods: POST  
INFO:Started server process [37]  
INFO:Waitingfor application startup.  
INFO:Application startup complete.  
INFO:Uvicorn running on http://0.0.0.0:8000(Press CTRL+C to quit)

当我们看到上面的 Uvicorn running on http://0.0.0.0:8000 ,就可以将这个模型配置到 Dify 的自定义模型中,开始 AI 任务编排,搭建一个简单的 AI 数据分析程序啦。

将启动好的服务,配置到 Dify 模型中

我使用的是 7B 模型,官方模型的 config.json 和文档中有上下文和 Max Tokens 的参数,填写进来即可。

数据源

这里我们使用腾讯新闻的科技频道[8]作为待处理的数据源。

腾讯科技的界面,包含比较泛的内容

主要因为这里的科技内容来自各种媒体的投稿,相对泛和杂一些,使用模型进行处理,可以比较直观的看到处理效果。

实际使用的时候,我们替换为想处理的数据源即可。

搭建 AI 数据清理工作流

让我们从第一个 AI 原子节点开始。

第一步:进行内容改写或打标签

很多时候,我们得到的数据都是乱七八糟的格式或书写风格,因为这些数据来源于不同的地方,不同的作者,不同的出品时间。

所以,对这些内容进行一定的标准化操作,就显得十分必要了,常见的操作包括:改写和打标签。

这里我们不做搜索策略,所以就只进行改写操作,让原始内容从各种奇奇怪怪的自媒体风格变成相对客观的陈述句,方便我们后续使用。如果你对搜索场景感兴趣,可以翻阅之前的内容《使用 Dify、Meilisearch、零一万物模型实现最简单的 RAG 应用(三):AI 电影推荐[9]》,结合自己自己的场景实践。

在配置模型参数的时候,建议使用较低的温度,确保模型尽量输出可靠。

配置模型参数

在前文中,我们使用 Dify 创建了一个应用,在 Prompt 提示词的输入框中,我们需要进行一些任务定义,比如结合我们选择的新闻数据源,可以这样写:

定义改写逻辑

验证处理结果没问题之后,我们可以使用 Dify 的 Prompt 抽取变量的功能,将我们想动态传递给 Dify 的内容改写为变量,再次验证没问题后,基础的原子节点就完成啦:

支持变量输入的原子应用

返回 Dify 主界面,我们将刚刚创建并配置好的 AI 应用转换为流水线(迁移为工作流编排)。

将应用转换为流水线

转换完的流水线会是下面这个样子,虽然简陋,但是是一个好的开始。

流水线概览

第二步:添加筛选流程

我们首先在 AI 流水线入口添加一个新的变量,用于接下来新增的筛选节点使用。

添加类型变量

接着,在我们前文中的“内容改写”节点后添加一个新的节点,用于数据筛选。提示词中,需要引用之前“内容改写”节点的输出结果。

添加筛选处理节点

完成节点添加后,我们就可以开始验证了,实际生产中,我们使用接口数据,或者文件数据。这里我们为了复现简单,直接复制粘贴页面文本内容即可。

复制粘贴,获得测试数据

模型运行后,发现模型节点输出并不完全符合预期,所以我们还需要进行一些处理。

添加新节点的处理结果

第三步:使用简单的工具方法预处理数据

出现上面的原因,主要是我们提示词中的例子数据和实际传入的数据不同。为了解决这个问题,我们可以在 Dify 中添加一个简单的“代码执行”节点。

添加新的代码执行节点

这里,我们写一段简单的 JavaScript 代码,将用户输入数据中的不必要字段直接过滤掉。

添加代码内容

function main({arg1}){  
let input = arg1;  
    input = input.split("\n").filter((line)=>{  
return!line.includes("热点精选")  
}).join("\n");  
return{  
result: input  
}  
}

然后,更新内容改写节点中的数据源变量为代码执行节点的执行结果。

在内容改写节点中应用新数据源

最后,我们就能够得到符合预期的执行结果啦。

符合预期的处理结果

其他:使用 API 构建新应用

在上文中,我们已经构建了完整的数据清洗流水线,并在 Dify 界面中进行了调试。实际生产过程中,我们会处理非常多的数据,所以需要使用 API 编程使用。

在页面的右上角,我们找到发布按钮,点击之后,选择 “访问 API”,能够打开 API 文档页面。

获取应用 API

如何使用 Dify API 进行编程交互,可以参考之前的内容《使用 Dify、Meilisearch、零一万物模型实现最简单的 RAG 应用(三):AI 电影推荐[10]》、《使用字节豆包大模型在 Dify 上实现最简单的 Agent 应用(四):AI 信息检索[11]》中相关的章节。

Dify 文档页面

完整流水线配置

本文中搭建的 AI 流水线应用的完整配置如下,你可以通过“导入”功能,快速复现这个应用:

app:  
  description:''  
icon:🤖  
icon_background:'#FFEAD5'  
mode:advanced-chat  
name:快来帮我洗数据!(copy)  
use_icon_as_answer_icon:false  
kind:app  
version:0.1.2  
workflow:  
conversation_variables:[]  
environment_variables:[]  
features:  
file_upload:  
image:  
enabled:false  
number_limits:3  
transfer_methods:  
-remote_url  
-local_file  
opening_statement:''  
retriever_resource:  
enabled:true  
sensitive_word_avoidance:  
configs:[]  
enabled:false  
type:''  
speech_to_text:  
enabled:false  
suggested_questions:[]  
suggested_questions_after_answer:  
enabled:false  
text_to_speech:  
enabled:false  
language:''  
voice:''  
graph:  
edges:  
-data:  
isInIteration:false  
sourceType:llm  
targetType:llm  
id:llm-source-1727679645155-target  
source:llm  
sourceHandle:source  
target:'1727679645155'  
targetHandle:target  
type:custom  
zIndex:0  
-data:  
isInIteration:false  
sourceType:llm  
targetType:answer  
id:1727679645155-source-answer-target  
source:'1727679645155'  
sourceHandle:source  
target:answer  
targetHandle:target  
type:custom  
zIndex:0  
-data:  
isInIteration:false  
sourceType:start  
targetType:code  
id:start-source-1727679927101-target  
source:start  
sourceHandle:source  
target:'1727679927101'  
targetHandle:target  
type:custom  
zIndex:0  
-data:  
isInIteration:false  
sourceType:code  
targetType:llm  
id:1727679927101-source-llm-target  
source:'1727679927101'  
sourceHandle:source  
target:llm  
targetHandle:target  
type:custom  
zIndex:0  
nodes:  
-data:  
selected:false  
title:开始处理  
type:start  
variables:  
-default:''  
description:null  
hint:null  
label:content  
max_length:null  
options:null  
required:true  
type:paragraph  
variable:content  
-label:内容类型  
max_length:48  
options:[]  
required:true  
type:text-input  
variable:type  
height:116  
id:start  
position:  
x:30  
y:258  
positionAbsolute:  
x:30  
y:258  
selected:false  
type:custom  
width:244  
-data:  
context:  
enabled:false  
variable_selector:null  
memory:  
role_prefix:  
assistant:''  
user:''  
window:  
enabled:false  
model:  
completion_params:  
stop:[]  
temperature:0.1  
mode:chat  
name:Qwen/Qwen2.5-7B-Instruct-GPTQ-Int4  
provider:openai_api_compatible  
prompt_template:  
-id:8591e02f-6d72-480d-9b61-b39e3802bf43  
role:user  
text:'你是资深的记者,擅长严谨客观的表达内容,对下面的内容进行内容标题改写,使用陈述句表达。  
  
  
            # 示例  
  
  
            改写前  
  
  
`text  
  
            半导体需求火爆!韩国芯片库存以2009年以来最快速度减少  
  
            财联社  
  
            1小时前  
  
`  
  
  
            改写后  
  
  
`text  
  
            [财联社] 韩国芯片库存以2009年以来最快速度减少,半导体需求火爆  
  
`  
  
  
            ## 待处理内容  
  
  
`text  
  
{{#1727679927101.result#}}  
  
`  
  
  
            ## 处理结果  
  
  
            '  
selected:false  
title:内容改写  
type:llm  
vision:  
configs:null  
enabled:false  
variable_selector:null  
height:98  
id:llm  
position:  
x:638  
y:258  
positionAbsolute:  
x:638  
y:258  
selected:false  
type:custom  
width:244  
-data:  
answer:'{{#1727679645155.text#}}'  
selected:false  
title:输出结果  
type:answer  
height:107  
id:answer  
position:  
x:1246  
y:258  
positionAbsolute:  
x:1246  
y:258  
selected:false  
type:custom  
width:244  
-data:  
context:  
enabled:false  
variable_selector:[]  
desc:''  
model:  
completion_params:  
temperature:0.1  
mode:chat  
name:Qwen/Qwen2.5-7B-Instruct-GPTQ-Int4  
provider:openai_api_compatible  
prompt_template:  
-id:3411a24a-f57d-4f26-9078-67a01915df57  
role:system  
text:'你是资深的记者,擅长严谨客观的表达内容,只输出待处理内容中和 “{{#start.type#}}“ 相关的内容。  
  
  
            ## 待处理内容  
  
  
`text  
  
{{#llm.text#}}  
  
`  
  
  
            ## 处理结果  
  
  
  
  
            '  
selected:false  
title:筛选内容  
type:llm  
variables:[]  
vision:  
enabled:false  
height:98  
id:'1727679645155'  
position:  
x:942  
y:258  
positionAbsolute:  
x:942  
y:258  
selected:false  
sourcePosition:right  
targetPosition:left  
type:custom  
width:244  
-data:  
code:"\nfunction main({arg1}) {\n    let input = arg1;\n    input = input.split(\"\  
          \\n\").filter((line)=>{\n        return !line.includes(\"热点精选\")\n    }).join(\"\  
          \\n\");\n    return { \n        result: input\n    }\n}\n"  
code_language:javascript  
desc:''  
outputs:  
result:  
children:null  
type:string  
selected:false  
title:处理输入内容  
type:code  
variables:  
-value_selector:  
-start  
-content  
variable:arg1  
height:54  
id:'1727679927101'  
position:  
x:334  
y:258  
positionAbsolute:  
x:334  
y:258  
selected:true  
sourcePosition:right  
targetPosition:left  
type:custom  
width:244  
viewport:  
x:-158.82992408947268  
y:90.16096026215655  
zoom: 0.961545363400739

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值