核心速览
本文提出了一种新颖的护理临床智能决策方法,通过将大型语言模型(LLMs)与本地知识库相结合,旨在提高护理临床决策的准确性和可靠性。
研究背景
-
研究问题:这篇文章要解决的问题是如何通过结合大型语言模型(LLMs)和本地知识库来提升护理临床决策的准确性和可靠性。
-
研究难点:该问题的研究难点包括:处理医疗信息的指数增长导致的信息过载问题;个性化护理需求的增加使得基于个体患者条件和需求的定制护理计划变得具有挑战性;医学研究和实践的快速发展使得临床决策难以跟上最新的证据和指南。
-
相关工作:该问题的研究相关工作包括大规模生成式语言模型在自然语言处理任务中的显著突破,如InstructGPT、ChatGPT和GPT4等。然而,这些模型在处理领域特定的查询时存在局限性,尤其是在专业领域的应用中,可能会产生误导性的事实。
研究方法
这篇论文提出了一种新的护理临床智能决策方法,结合了大型语言模型和本地知识库。具体来说,
- 决策问题分类:首先,通过对输入文本进行过滤,确定问题与护理相关的类别。使用BERT模型来限制模型回答的问题范围,确保问题在模型的专业领域内。
-
本地护理知识库的开发:将本地知识源分为文本数据和时间数据两大类。文本数据包括领域特定的文献和操作指南,时间数据包括护理记录。对文本数据进行清洗、去重、分词等处理,对时间数据进行特征提取和格式化。
-
护理智能决策平台的构建:将决策问题文本和知识库文本通过Word2vec嵌入向量化,然后使用Faiss进行向量数据库检索,识别与决策问题相关的知识库内容。最后,将决策问题和内容编译成提示模板,输入到大型语言模型中生成决策计划。
实验设计
-
数据收集:邀请来自六个科室(包括急诊、重症监护、老年医学和妇产科)的护士长制定10个相关的决策问题,每个问题基于真实的临床护理场景。
-
实验设计:对每个问题进行三次不同的会话,以获得三个相应的答案。邀请18名护士长对每个答案进行评估,评估标准包括答案的准确性、知识点的相关性、分析和解释过程的逻辑性、答案的完整性以及可读性和布局。
-
样本选择:选择了六个科室的护士长作为评估人员,确保评估结果的多样性和代表性。
-
参数配置:实验中使用的基础大型语言模型包括LLaMA2-7B、ChatGLM2-6B和Baichuan2-7B,系统部署在本地服务器上,环境包括Ubuntu 20.04 LTS、Pytorch 2.0、Python 3.8.13等。
结果与分析
- 系统性能:系统在儿科、老年医学、眼科和肿瘤科的决策问题上表现出色,平均得分在90分左右,显示出系统在这些领域的有效性和可靠性。
-
稳定性分析:在儿科、老年医学、眼科和肿瘤科的问题上,系统的得分波动较小,反映出系统在这些领域的稳定性和一致性。
-
复杂场景下的表现:在重症监护和急诊科的问题上,系统的得分波动较大,表明系统在处理复杂和动态的临床环境时存在挑战。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。