值得一看的小模型技术全面总结及RAG文档处理及切分小模型工具

本文还是来看看RAG,不过是从另一个角度,从小模型(其实这个小不太好说,7B或者以下?)角度;

因此,讲两件事,一个是回顾下小模型,推荐一个写的很好的小模型进展技术总结综述,里面提到的几个关键点都值得索引;再看小模型用于RAG文本切分的一些小模型工具,包括文档处理、文档切分等。

一、特别直接推荐的小模型进展技术总结

关于小模型综述,我们之前其实有说过,例如《What is the Role of Small Models in the LLM Era: A Survey》,而进一步的, 老刘说NLP技术社区在11月07日早报中提到了另一个小模型综述,《A Comprehensive Survey of Small Language Models in the Era of Large Language Models: Techniques, Enhancements, Applications, Collaboration with LLMs, and Trustworthiness》(https://arxiv.org/pdf/2411.03350),周末有空,温习了下,感觉很不错,十分推荐给大家,可以重点看几个点:

1、当前都有哪些小模型

2、小模型的发展时间线

3、Representative quantization methods当前一些量化的方法

4、当前一些模型压缩压缩的方法对比

5、小模型的领域应用

尤其是这个,小模型用于websearch上的结合方式

6、小模型的部署成本消耗

7、小模型协助大模型的一些代表工作

二、再看小模型用于RAG文档处理及切分‍‍‍‍‍‍‍‍‍‍

关于RAG切分,可以看看小模型用在RAG领域的一些工作,也是昨晚看到的,JinaAI在这方面做了不少工作。

先说文档清洗阶段,将html转换为markdown(reader-lm-0.5b: https://huggingface.co/jinaai/reader-lm-0.5b,reader-lm-1.5b: https://huggingface.co/jinaai/reader-lm-1.5b)

使用方式也很简单:

# pip install transformers   from transformers import AutoModelForCausalLM, AutoTokenizer   checkpoint = "jinaai/reader-lm-0.5b"   device = "cuda" # for GPU usage or "cpu" for CPU usage   tokenizer = AutoTokenizer.from_pretrained(checkpoint)   model = AutoModelForCausalLM.from_pretrained(checkpoint).to(device)   # example html content   html_content = "<html><body><h1>Hello, world!</h1></body></html>"   messages = [{"role": "user", "content": html_content}]   input_text=tokenizer.apply_chat_template(messages, tokenize=False)   inputs = tokenizer.encode(input_text, return_tensors="pt").to(device)   outputs = model.generate(inputs, max_new_tokens=1024, temperature=0, do_sample=False, repetition_penalty=1.08)      print(tokenizer.decode(outputs[0]))   

再说文档切分阶段,将文档进行切割,这里还会涉及到一个wiki-segment数据集,https://github.com/koomri/text-segmentation) ,从维基百科文章中提取的大规模结构化文本片段集合,包含超过727,000个文本块,每个片段代表维基百科文章的不同部分,例如引言、章节或子章节。

基于这个数据,可以训练出来一些小模型进行切割,例如:

simple-qwen-0.5(https://huggingface.co/jinaai/text-seg-lm-qwen2-0.5b),根据文档的结构元素进行切分;

topic-qwen-0.5(https://huggingface.co/jinaai/text-seg-lm-qwen2-0.5b-cot-topic-chunking):借鉴来自Chain-of-Thought)推理,先识别文本中的主题,再根据主题进行切分,确保每个段落主题连贯最适合复杂的多主题文档;

summary-qwen-0.5(https://huggingface.co/jinaai/text-seg-lm-qwen2-0.5b-summary-chunking):能切分文档,并生成每个分块的摘要,适合长文档问答任务需要更多训练数据,这个就很有趣,还需要用到GPT4-O进行增强:

Generate a five to ten words topic and a one sentence summary for this chunk of text.   #   {text}   #   Make sure the topic is concise and the summary covers the main topic as much as possible.      Please respond in the following format:   #   Topic: ...   Summary: ...   #   Directly respond with the required topic and summary, do not include any other details, and do not surround your response with quotes, backticks or other separators.      """.strip()   

总结

本文主要从围绕小模型这个话题做了回顾,一个是回顾下小模型,推荐一个写的很好的小模型进展技术总结综述,里面提到的几个关键点都值得索引;再看小模型用于RAG文本切分的一些小模型工具,包括文档处理、文档切分等。

最近,在做文档处理结合落地的一些事情,尤其是表格解析,目前最大的问题是稳定性和速度的问题,而为了解决速度和成本问题,所以大模型(甚至是Transformer级)的方案都要舍弃掉,所以也是在看一些传统的cv方案,比如yolo做检测这些,做一些组合策略,其实效果还不错,所以也在想,当前很多大模型这股潮流其实将大家的思维固化了,觉得除了大模型就没有其他方案【其实这个的确如此,比如实体识别这些经典任务,bert-crf这些很多人竟然都不知道了,不去往那方面想,这其实问题挺大的】,因此,之前已经被验证的经典方案,还是要捡起来,这样,才不会过于被动,技术思维不要固化。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值