前言
Solution at a glance
LLM已经向我们展示了其强大的生成能力,但是当我们想提从生成的文本中提取结构化数据,确实遇到了非常大的挑战。
特别是在提取json格式时, 不仅要求模型输出符合特定的语法规则,还需要确保数据能被正确的提取出来。
下面将给大家介绍 lm-format-enforcer 这个款Json格式提取工具
lm-format-enforcer 的能力
比JSONFormer Outlines支持更多的能力。
目前已经成为了 vllm 作为 JSON 格式输出的后端之一.
-
支持批量生成和波束搜索 :每个input/beam 可以在每个时间步过滤不同的标记
-
支持 JSON 模式、JSON 模式(无模式)和正则表达式格式
-
支持 JSON 模式中的必需字段和可选字段
-
支持 JSON 模式中的嵌套字段、数组和字典
-
使语言模型可以自由控制 JSON 模式中的空格和字段顺序,从而减少幻觉。
-
支持 transformers, LangChain, LlamaIndex, llama.cpp, vLLM, Haystack, NVIDIA TensorRT-LLM and ExLlamaV2.
Json格式化输出的原理解析
An example of the character level parser and tokenizer prefix tree in a certain timestep
lm-format-enforcer约束Json输出的原理:
语言模型在每个时间步骤step,输出LLM的logits之后,在生成下一个token之前,通过设定的规则,只允许在给定的token的范围内采样,并通过添加bias的方式,不允许采样其他token,从而实现指定的结构化生成。
具体可以参考上图,分两步走:
-
创建Token词表的前缀树
-
依靠前缀树,约束Token按照指定结构输出
Token 词表前缀树的构建
-
首先会根据 tokenizer 给出的词表,初始化一个字符级别的前缀树。
-
前缀树上某个节点对应某个token,该节点的第一个子节点连着这个token中的第一个个字符,下一个子节点,对应这token中的下一个字符。
-
当token中的字符遍历完了,这时候就是填入该token对应的 token id
-
这样整个token词表中的 token 和 token id 的映射都会通过这样的方式插入到前缀树中。
约束Token按照指定格式输出
-
在初始化的时候,会接收用户指定的 json schema
-
接着在后续每一步生成过程中,会根据之前生成的内容,判断目前处于什么状态
-
然后根据当前所处的状态直接给出限定的字符集合。
lm-format-enforcer 实战
from pydantic import BaseModel from lmformatenforcer import JsonSchemaParser from lmformatenforcer.integrations.transformers import build_transformers_prefix_allowed_tokens_fn from transformers import pipeline class AnswerFormat(BaseModel): first_name: str last_name: str year_of_birth: int num_seasons_in_nba: int # Create a transformers pipeline hf_pipeline = pipeline('text-generation', model='TheBloke/Llama-2-7b-Chat-GPTQ', device_map='auto') prompt = f'Here is information about Michael Jordan in the following json schema: {AnswerFormat.schema_json()} :\n' # Create a character level parser and build a transformers prefix function from it parser = JsonSchemaParser(AnswerFormat.schema()) prefix_function = build_transformers_prefix_allowed_tokens_fn(hf_pipeline.tokenizer, parser) # Call the pipeline with the prefix function output_dict = hf_pipeline(prompt, prefix_allowed_tokens_fn=prefix_function) # Extract the results result = output_dict[0]['generated_text'][len(prompt):] print(result) # {'first_name': 'Michael', 'last_name': 'Jordan', 'year_of_birth': 1963, 'num_seasons_in_nba': 15}
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。