一、RAG 技术原理与优势
在人工智能飞速发展的当下,从海量文档中高效处理、理解和检索信息,成为众多领域的关键需求。检索增强生成(Retrieval-Augmented Generation,RAG)技术应运而生,它代表了 AI 信息处理方式的重大进步。传统语言模型仅依赖预先训练的数据,而 RAG 系统在生成回复前,会动态检索相关信息,就如同为 AI 配备了一个专属 “图书馆”,在回答问题前可随时查阅参考。
RAG 系统主要包含检索和生成两大核心能力。检索能力负责从知识库中精准找出最相关的信息,生成能力则利用检索到的信息,构建连贯且准确的回复内容。其工作流程遵循 “用户查询→文档检索→上下文增强→大语言模型(LLM)回复” 的清晰路径。
在文档检索阶段,系统先将用户查询转化为向量嵌入,接着在向量数据库中搜索相似文档,最终提取出最相关的文本块。上下文增强环节,会把检索到的文档进行整合,并按照大语言模型易于处理的格式进行编排。最后,大语言模型结合查询与上下文信息,生成富有见地的回复。
RAG 系统具备诸多显著优势。首先,它能大幅提升回复的准确性,通过提供相关上下文,有效减少模型 “幻觉” 现象,即生成看似合理却无事实依据的内容。其次,RAG 系统的知识更新便捷,只需添加新文档,就能轻松扩充知识储备。再者,其回复具有可验证性,所有答案都能追溯到原始文档来源。从成本角度看,无需持续对模型进行重新训练,降低了时间和资源成本。此外,通过更新文档库,RAG 系统能快速适应新领域的需求,展现出强大的领域适应性。
二、DeepSeek 模型家族剖析
DeepSeek 在人工智能领域异军突起,凭借其开源语言模型家族,为各类应用场景提供了丰富选择。该家族涵盖基础模型和专业模型两大类别。
基础模型参数规模从 70 亿到 670 亿不等,具备通用的语言理解和生成能力,是支撑多种自然语言处理任务的基石。专业模型则针对特定领域进行优化,如 DeepSeek Coder 专为编程任务设计,能高效处理代码生成、代码理解等工作;DeepSeek-MoE 采用专家混合机制,显著提升了模型的综合性能。
在构建 RAG 系统时,选择 DeepSeek-R1-Distill-Llama-70B 模型具有诸多优势。性能方面,它在众多任务中的表现可与 GPT-3.5 相媲美,能为用户提供高质量的回复。通过蒸馏优化技术,该模型在保持性能的同时,提升了计算效率,降低了运行成本。多语言支持能力也是其一大亮点,在多种语言处理任务中都展现出强大实力,为构建多语言 RAG 系统提供了有力保障。其开源特性更是为开发者提供了广阔的定制和修改空间,再加上活跃的社区支持,模型能得到定期更新和持续改进。
三、基于 DeepSeek 的 RAG 系统构建
(一)系统架构概览
本 RAG 系统由多个关键组件协同构成。FastAPI 作为后端框架,负责搭建 API 接口,实现与外部的交互;ChromaDB 用于向量存储,高效管理文档的向量表示;LangChain 承担编排工作,协调各组件间的协作;DeepSeek-R1-Distill-Llama-70B 模型负责生成回复内容;HuggingFace 的嵌入技术则用于将文本转化为向量形式,便于在向量数据库中进行检索。
(二)核心组件实现细节
- 文档处理管道:DataIngestionPipeline 类承担文档处理的核心任务。初始化时,它接收包含文件路径、持久化目录等信息的配置参数。在处理流程中,首先通过 FileComponent 类加载并验证文件,确保数据的准确性和完整性。接着,利用 SplitTextComponent 类将文件内容分割成合适大小的文本块,这里推荐的块大小为 1000 字符,并设置 200 字符的重叠部分,以维持上下文的连贯性,同时充分考虑文档的结构进行分割。随后,借助 HuggingFaceEmbeddings 类创建文本嵌入,并将其存储到 Chroma 向量数据库中。最后,将分割后的文本转换为 LangChain 的文档格式,并添加到向量数据库中,完成文档的预处理和存储工作。
class DataIngestionPipeline:` `def __init__(self, config: DataIngestionConfig):` `self.config = config` `def process(self):` `# Load and validate files` `file_loader = FileComponent(` `path=self.config.file_path,` `silent_errors=self.config.silent_errors` `)` `loaded_data = file_loader.load_file()` ` # Split into manageable chunks` `text_splitter = SplitTextComponent(` `data_inputs=[loaded_data],` `chunk_size=self.config.chunk_size,` `chunk_overlap=self.config.chunk_overlap` `)` `split_data = text_splitter.split_text()` ` # Initialize embeddings and store` `embeddings = HuggingFaceEmbeddings(` `model_name=self.config.model_name,` `encode_kwargs={"device": self.config.encode_device}` `)` ` vector_store = Chroma(` `persist_directory=self.config.persist_directory,` `embedding_function=embeddings,` `collection_name=self.config.collection_name` `)` ` # Store documents` `documents = [data.to_lc_document() for data in split_data]` `vector_store.add_documents(documents)
- 聊天系统实现:RetrievalChatSystem 类负责处理用户的聊天输入并生成回复。初始化时,它创建 HuggingFaceEmbeddings 实例用于文本向量化,加载 Chroma 向量数据库,以及初始化 DeepSeek 模型。在处理聊天输入时,首先通过向量数据库的 similarity_search 方法检索与用户问题最相关的 5 个文档。然后,将这些文档的内容拼接成上下文信息。接着,构建包含上下文和问题的提示信息,发送给 DeepSeek 模型进行处理。模型生成回复后,将其封装成 Message 对象返回,实现了从用户问题到系统回复的完整处理流程。
class RetrievalChatSystem:` `def __init__(self, collection_name: str, persist_directory: str):` `self.embeddings = HuggingFaceEmbeddings(` `model_name="sentence-transformers/all-MiniLM-L6-v2"` `)` ` self.vectorstore = Chroma(` `persist_directory=persist_directory,` `embedding_function=self.embeddings,` `collection_name=collection_name` `)` ` self.llm = ChatGroq(` `model_name="DeepSeek-R1-Distill-Llama-70B",` `temperature=0.7` `)` `def process_chat_input(self, input_message: Message) -> Message:` `# Retrieve relevant documents` `retrieved_docs = self.vectorstore.similarity_search(` `input_message.text,` `k=5` `)` ` # Create context from retrieved documents` `context = "\n\n".join([doc.page_content for doc in retrieved_docs])` ` # Generate response` `prompt = f"""Based on the following context, provide a relevant response`` in Hinglish language. If the question isn't related to the context, `` indicate that clearly:` `Context:` `{context}` ` Question:` `{input_message.text}` ` Response:"""` ` response = self.llm.invoke(prompt)` ` return Message(` `text=response.content,` `sender="AI",` `sender_name="AI Assistant"` `)
(三)API 端点设计
- 文档上传端点:/upload 端点负责接收用户上传的文档。在接收到上传的文件后,先将其保存到临时路径。然后,创建 DataIngestionConfig 配置对象,并初始化 DataIngestionPipeline 文档处理管道。管道对上传的文档进行处理,将其转化为向量存储到 ChromaDB 中。若处理过程顺利,返回 “success” 状态;若出现异常,则抛出 HTTP 500 错误,并附带详细的错误信息。
@app.post("/upload")``async def upload_pdf(file: UploadFile = File(...)):` `try:` `# Save uploaded file` `file_path = f"temp_{file.filename}"` `with open(file_path, "wb") as f:` `f.write(file.file.read())` ` # Process file` `config = DataIngestionConfig(` `file_path=file_path,` `persist_directory="path/to/chroma_db"` `)` ` pipeline = DataIngestionPipeline(config)` `vector_store = pipeline.process()` ` return {"status": "success"}` `except Exception as e:` `raise HTTPException(status_code=500, detail=str(e))
- 聊天端点:/chat 端点用于处理用户的聊天请求。它接收包含用户消息和发送者名称的 ChatRequest 对象,并将其转化为 Message 对象。然后,通过 RetrievalChatSystem 实例的 process_chat_input 方法处理用户消息,获取系统回复。最后,将回复内容封装成 ChatResponse 对象返回给用户。若处理过程中发生错误,同样抛出 HTTP 500 错误并返回错误详情。
@app.post("/chat", response_model=ChatResponse)``async def chat(request: ChatRequest):` `try:` `input_message = Message(` `text=request.message,` `sender="user",` `sender_name=request.sender_name` `)` ` response = chat_system.process_chat_input(input_message)` ` return ChatResponse(` `message=response.text,` `sender=response.sender,` `sender_name=response.sender_name` `)` `except Exception as e:` `raise HTTPException(status_code=500, detail=str(e))
四、系统性能优化策略
(一)分块策略
合理的分块策略是提升系统性能的关键。建议将文档分割为 1000 字符左右的文本块,这样既能保证每个块包含足够的信息,又便于模型处理。同时,设置 200 字符的重叠部分,有助于维持上下文的连贯性,避免信息丢失。在分割时,还需充分考虑文档的结构,如章节划分、段落逻辑等,使分割后的文本块更具语义完整性。
(二)向量搜索优化
采用最大边际相关(MMR)算法,可在检索结果中实现相关性与多样性的平衡,获取更具价值的文档。根据不同的应用场景,灵活调整检索的文档数量(k 值)。对于需要精确答案的场景,可适当减小 k 值;对于需要广泛参考信息的场景,则增大 k 值。此外,实施有效的索引机制,能显著提高向量搜索的速度和效率。
(三)错误处理机制
构建完善的日志系统,详细记录系统运行过程中的各类事件和错误信息,便于排查问题。优雅地处理边界情况,如空查询、超长文本等,避免系统崩溃。为用户提供清晰、有意义的错误提示,帮助用户理解问题所在,提升用户体验。
利用 DeepSeek 的先进语言模型构建多语言 RAG 系统,为智能文档交互领域开辟了新的道路。通过整合高效的向量存储和检索技术,该系统能够提供准确、上下文感知的回复,同时具备动态更新知识的能力。无论是客户支持系统、文档查询工具还是知识库建设,这一系统架构都为满足实际需求提供了坚实的基础,随着技术的不断发展和完善,其应用前景将更加广阔。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。