一文读懂 Agentic AI(代理型 AI )技术点滴

Hello folks,我是 Luga,今天我们来聊一下赋能人工智能自主性和目标导向能力应用场景的 - 构建高效、灵活的计算架构的 Agentic AI 技术。

随着人工智能技术的飞速发展,AI 已从简单的模式识别和预测工具,逐步演变为能够自主感知、推理、决策并执行任务的智能体——这就是 Agentic AI(即 代理型 AI )。

从某种意义上而言,Agentic AI 不仅仅是传统 AI 的升级版,通过结合大模型技术、强化学习和多模态交互,赋予了 AI 更强的自主性和目标导向能力。无论是智能客服、自动驾驶,还是物流优化,Agentic AI 正在重塑各行业的智能化进程。

01.如何认识 Agentic AI ?

通常,我们可以这样理解:Agentic AI 是一类具备自主性(Autonomy)、目标导向(Goal-Directed)和交互性(Interactivity)的人工智能系统,能够像人类代理一样在复杂、多变的环境中感知信息、进行推理、制定决策并执行任务,从而实现目标驱动的智能化行为。

简而言之,Agentic AI 就是一种基于目标驱动的智能体(Agent),通过感知环境、推理决策和执行动作,自主完成任务,同时具备动态适应和交互能力。

img

与传统 AI 系统(如基于规则的专家系统或单一任务导向的监督学习模型)相比, Agentic AI 突破了被动执行的局限,展现出更强的主动性、适应性和协作能力。它不仅能够理解复杂的目标和上下文,还能动态调整策略以应对环境变化,并在多模态交互中与人类或其他系统高效协作。

那么,Agentic AI 具有哪些核心特性呢?具体可参考如下所示:

1、自主性(Autonomy)

Agentic AI 无需持续的人类干预即可独立运行,能够根据目标和环境状态自主完成任务。例如,在物流场景中,Agentic AI 可以基于实时交通数据自动调整配送路线,无需人工干预即可优化运输效率。

2、目标导向(Goal-Directed)

Agentic AI 能够理解并追求明确的目标,具备从目标分解到执行的完整能力。以物流优化为例,其目标可能是“最小化运输时间”,AI 会通过分析多源数据(如 GPS、天气预报)制定最优策略。

3、环境感知(Environmental Perception)

通过多模态数据(如文本、图像、视频、传感器数据)全面感知环境。例如,在物流在途监控中,Agentic AI 可以结合车载摄像头拍摄的图像(检测货物位移)和 GPS 数据(定位车辆位置),构建对环境的全面理解。

4、动态适应(Dynamic Adaptation)

Agentic AI 能够在动态环境中实时调整策略,应对突发状况。例如,在物流配送过程中,若遇到突发交通拥堵,AI 可以动态重新规划路线,确保按时送达。

5、交互性(Interactivity)

Agentic AI 能够与人类或其他系统高效协作,通过多模态交互(如语音、API、图形界面)完成复杂任务。例如,物流司机可以通过语音指令(如“查询货物状态”)与 AI 交互,AI 则通过 API 调用后端服务返回结果。

02.Agentic AI 与传统 AI 的对比解析

传统 AI 系统(如基于规则的专家系统或监督学习模型)通常专注于单一任务,缺乏自主性和上下文理解能力,其设计目标是高效完成预定义任务,但在复杂、动态环境中往往表现受限。例如,传统图像分类模型(如基于 CNN 的 ResNet)可以识别物流车辆的篷布状态(打开或关闭),但无法根据环境变化(如光线条件、天气变化)动态调整策略,也无法理解更复杂的目标(如“确保货物安全”)。

相比之下,Agentic AI 通过以下核心能力实现了从“被动执行”到“主动决策”的质的飞跃,具体可参考如下:

1、上下文理解(Contextual Understanding)

Agentic AI 基于大模型技术(如 LLaMA、GPT、BERT)具备强大的上下文理解能力,能够解析复杂指令并结合上下文生成合理决策。例如,在物流问答系统中,Agentic AI 可以理解司机提出的复杂问题(如“货物是否因天气原因延误?”),通过分析运输日志和天气数据生成准确回答。

2、自主决策(Autonomous Decision-Making)

Agentic AI 通过强化学习(Reinforcement Learning, RL)或规划算法学习最优策略,能够在动态环境中自主决策。例如,在物流配送场景中,Agentic AI 可以基于实时交通数据和历史运输记录,学习最优配送路径,并动态调整策略以避开拥堵路段。

3、多模态交互(Multimodal Interaction)

Agentic AI 能够结合多模态数据(如文本、图像、语音、传感器数据)进行全面感知和交互,显著提升其环境适应能力。例如,在物流在途监控中,Agentic AI 可以同时分析车载摄像头拍摄的视频流(通过 YOLOv5 检测货物位移)、GPS 数据(定位车辆位置)和运输日志(记录运输状态),并通过语音接口与司机交互,提供实时建议。

4、动态适应与协作

传统 AI 缺乏动态适应能力,面对环境变化时往往需要人工干预。而 Agentic AI 通过强化学习和多模态感知,能够实时调整策略并与其他系统协作。例如,在自动驾驶场景中,Agentic AI 可以根据实时路况(通过雷达和摄像头感知)调整驾驶策略,并通过 API 与交通管理系统协作,获取最新路况信息。

03.Agentic AI 演进史解析

通常而言,Agentic AI(代理型 AI )系统已突破传统 AI 的局限,不再仅仅局限于生成文本或执行单一任务,而是展现出更高级的智能能力——能够根据目标和环境自主做出决策、调用外部函数,甚至运行复杂的自主工作流,从而实现从被动响应到主动执行的跨越。

为了更清晰地理解 Agentic AI 的能力边界,我们将针对 AI 代理能力的五个层级——从基础的简单响应者(Simple Responder)到具备完全自主决策能力的智能体(Fully Autonomous Agent)进行一一解析。这些层级不仅体现了 Agentic AI 的技术演进,也为我们在不同场景下设计和应用 AI 系统提供理论框架。

接下来,让我们深入探讨这五个层级的具体内涵、技术实现及其在实际场景中的应用价值,揭示 Agentic AI 如何通过自主性和交互性推动智能化进程的下一场革命…

Level 1:Basic Responder(****基础响应者)- Agentic AI 能力层级的最低阶段

在 Agentic AI(代理型 AI)的能力层级体系中,Basic Responder 代表了 AI 代理能力的最低阶段,其核心特征是高度依赖人类指令,缺乏自主性和对程序流程的控制能力。在此层级中,AI 系统的运行完全由人类主导,人类用户需要明确提供每一步的输入指令,并引导整个任务流程的执行。大语言模型(LLM)在这一阶段仅扮演通用的响应者角色,其功能局限于接收人类输入、处理后生成相应的输出,而无法主动理解任务目标、调整策略或控制程序的执行逻辑。

img

Level 2:Router Pattern(路由模式)- Agentic AI 能力层级的初步决策阶段

此模式标志着 AI 代理能力从被动响应向主动决策的初步过渡。相较于基础响应者(Basic Responder),路由模式的 AI 系统具备了一定的自主决策能力,但其运行仍需依赖人类预定义的路径或函数。

在此层级中,人类用户负责设计和定义任务流程中可用的路径或函数(如 API 调用、任务分支),而大语言模型(LLM)则基于输入和上下文,做出基础的决策,自主选择最合适的函数或路径执行任务。这种模式赋予了 AI 系统初步的决策能力,使其能够在有限范围内根据目标和环境状态灵活调整行为。

img

Level 3:Tool Calling(****工具调用)- Agentic AI 能力层级的智能化执行阶段

Tool Calling(工具调用)层级代表了 AI 代理能力向智能化执行迈进的重要阶段,相较于路由模式(Router Pattern),其自主性和灵活性得到了显著提升。

在此层级中,人类用户需要预先定义一组可供大语言模型(LLM)访问的工具集(如API接口、数据库查询函数、外部服务调用),以支持任务的完成。而 LLM 则展现出更高级的决策能力,不仅能够根据任务目标和上下文自主决定何时使用这些工具,还能动态确定工具执行所需的参数,从而高效完成复杂任务。这种能力使 Agentic AI 从简单的路径选择者进化为具备工具使用能力的智能执行者。

img

Level 4:Multi-Agent Pattern(多代理模**)**- Agentic AI 能力层级的协作与动态决策阶段

在多代理模式(Multi-Agent Pattern)层级中,AI 代理能力向协作化与动态决策开始迈进,相较于工具调用(Tool Calling)层级,其复杂性和智能化水平显著提升。

在此层级中,系统由一个核心的管理代理(Manager Agent)负责协调多个子代理(Sub-Agents),通过迭代决策的方式动态确定下一步行动,从而高效完成复杂任务。人类用户需要预先定义代理之间的层级结构、各自的角色分工以及可用的工具集(如 API 接口、数据库查询服务),以确保协作的有序性。而大语言模型(LLM)则扮演执行流程控制者的角色,基于任务目标、上下文信息和子代理的反馈,自主决定下一步的执行策略,展现出更高级的动态决策能力和协作能力。

img

Level 5:Autonomous Pattern(自主模- Agentic AI 能力层级的巅峰,迈向独立智能开发阶段

而自主模式(Autonomous Pattern)代表了 AI 代理能力的最高阶段,也是当前技术发展中最先进的模式。相较于多代理模式(Multi-Agent Pattern),自主模式的 AI 系统展现出前所未有的自主性和创造力,其核心能力在于大语言模型(LLM)能够独立生成并执行全新的代码,真正扮演起独立 AI 开发者的角色。

在此层级中,AI 不再依赖人类预定义的工具、路径或代理结构,而是能够根据任务目标和环境需求,自主设计解决方案、编写代码并执行,从而实现从需求分析到任务完成的端到端自主化流程。这种能力使 Agentic AI 从单纯的执行者进化为具备创造性和自我驱动能力的智能体,标志着AI技术向通用人工智能(AGI)迈进的重要一步。

img

基于上述所述,Agentic AI 的五个能力层级——从基础响应者到自主模式,体现了 AI 从被动响应到完全自主的智能化演进。每个层级在功能、自主性和复杂性上逐步提升,为不同场景提供了灵活的应用选择:

在简单任务中,基础响应者高效可靠;在复杂协作中,多代理模式展现优势;在创新场景中,自主模式开启了 AI 开发的新可能。结合我们的自有技术背景,可以通过 PyTorch 和 Hugging Face 开发大模型(如 LLaMA),使用 Golang 和 Spring Boot 实现API调用,借助Kubernetes和NVIDIA GPU Operator部署服务,并通过 OpenTelemetry 和 Prometheus 监控性能,加速 Agentic AI 在各大应用场景(如在途监控、路径优化)中的落地。

未来,随着计算资源、可解释性和安全性的进一步突破,Agentic AI 有望成为智能化进程的核心驱动力。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

### 什么是代理AI (Agentic AI) 代理AI,即Agentic AI,在特定环境下能够自主操作并作出决策的人工智能实体。这种类AI旨在模仿人类或其他生物体的行为模,能够在复杂的、不确定的环境中独立运作,并根据环境变化调整行为策略[^2]。 代理AI具备高度自治能力,可以代表用户执行各种任务,从简单的自动化流程到更为复杂的交互过程。这类系统不仅限于软件层面的应用,还包括物理世界的设备控制,如自动驾驶车辆或是家庭内的智能装置管理等[^3]。 ### Agentic AI的特点 - **自主性**:无需持续人为干预即可完成指定工作; - **适应力强**:能快速响应外界条件的变化而改变行动计划; - **学习能力强**:借助机器学习算法不断优化自身的性能表现; - **多模态感知**:综合利用视觉、听觉等多种感官输入来进行判断与决策; ### 应用实例 #### 自动驾驶汽车 通过融合来自摄像头、雷达等多个传感器的数据流,实时监测周围情况,规划最优行驶路线,确保旅途的安全性和效率最大化[^4]。 ```python def process_sensor_data(sensor_inputs): """ 处理来自多个传感器的数据以决定下一步动作. 参数: sensor_inputs (dict): 不同类传感器收集的信息集合 返回值: action_plan (str): 下一步应该采取的动作描述字符串 """ pass ``` #### 客户服务机器人 在电子商务平台或金融机构中充当全天候客服人员角色,解答顾客疑问、解决常见问题以及提供建议和支持,从而改善整体服务质量。 ```json { "customer_query": "如何申请信用卡?", "response_options": [ {"text":"您可以访问我们的官方网站填写在线表格"}, {"text":"拨打官方热线电话获取帮助"} ] } ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值