*要弄清楚DeepSeek等大语言模型(LLM)对显卡的要求,需结合其应用场景(训练、推理)和模型规模。*
训练大型模型(如百亿参数以上,70B)时,推荐显存≥80GB的显卡(如NVIDIA A100/H100),特别是进行全参数训练的情况下。
如果只是对中等模型(十亿参数,7B)进行推理,则需16GB–24GB显存的显卡(如RTX 3090/4090或A10/A6000)。
对于本地轻量级推理任务,最低需8GB显存的显卡(如RTX 3060/4060)。
一、训练(Training)
模型训练(Training)是什么?模型训练(Training)是机器学习和深度学习中的一个核心过程,通过使用大量的数据来调整和优化模型的参数,使其能够执行特定的任务或做出准确的预测。
一、选择模型架构
根据任务类型和数据特点,选择合适的模型架构。例如,对于图像识别任务,可以选择卷积神经网络(CNN);对于序列预测任务,可以选择循环神经网络(RNN)或Transformer等。
二、准备数据
对原始数据进行必要的预处理,如数据增强(如旋转、缩放、翻转等)以及归一化或标准化等,以提高模型的学习效果和泛化能力。同时将数据集划分为训练集、验证集和测试集。训练集用于训练模型,验证集用于调整模型参数和选择最优模型,测试集用于评估模型的最终性能。
三、设置训练参数
确定适当的超参数,如学习率、批处理大小、训练周期(或迭代次数)、优化器等。这些参数对模型的训练效果和速度有重要影响。
如何计算模型训练时内存需求?模型计算显存主要由模型参数、优化器状态、梯度信息以及激活值等多方面因素共同决定。
总内存 = 模型参数内存 + 激活内存 + 梯度内存 + 优化器状态内存 + KV缓存内存 + 额外开销**(如临时张量、内存碎片化等),额外开销通常可以估算为总内存需求的一定比例(如10-20%)。**
假设有一个拥有10亿个参数的模型,使用float16精度进行训练,批大小为32,序列长度为512,隐藏层大小为4096,使用Adam优化器。
-
模型参数内存 = 700亿 × 1.86 ≈ 130GB
-
激活内存(前向 + 反向) = 80层 × 288MB × 2 ≈ 45GB
-
梯度内存 = 700亿 × 1.86 ≈ 130GB(梯度与参数量相同,数据类型为 float16)
-
优化器状态内存 = 2 × 130.4GB = 260.8GB(Adam需要维护一阶矩和二阶矩)
-
缓冲区内存 = 框架开销(PyTorch/TensorFlow):4-8 GB
-
KV缓存内存 = 2 × 1 × 80 × 64 × 128 × 2048 × 2字节 ≈ 5.24GB
-
额外开销 = (130GB + 45GB + 130GB + 260GB + 4 + 5) × 10% = 50GB
**总内存需求约为600GB(具体值取决于激活内存和额外开销的大小),**需多卡并行(如A100 80G × 8)。
****
二、推理(Inference)
****什么是模型推理(Inference)?****在模型训练完成后,使用训练好的模型对新数据进行预测或生成的过程。
**在模型训练阶段,模型通过大量数据的学习,掌握了某种特定的能力或模式。**而在推理阶段,模型则利用这种能力对新的、未见过的数据进行处理,以产生预期的输出。
训练好的大语言模型(LLM)可以导出为可部署格式(如ONNX、PyTorch、TensorFlow模型文件),并保存模型权重和配置文件。在部署平台上加载模型后进行初始化,就可以开始进行模型推理。
****如何计算模型推理时内存需求****?模型推理显存主要取决于模型参数、激活值、KV缓存以及缓冲区内存等,主要取决于模型参数。**
*总内存=模型参数内存+激活内存+KV缓存内存+缓冲区内存 *
以DeepSeek-R1 70B模型为例,使用float16类型,序列长度为2048,批量大小为1,隐藏层层数为80,隐藏层维度为8192,注意力头数量为64,头维度为128,使用KV缓存。
- 模型参数内存 = 700亿 × 1.86 ≈ 130GB
- 激活内存 = 80层 × 288MB=22.5GB
- KV缓存内存 = 2 × 1 × 80 × 64 × 128 × 2048 × 2 ≈ 5.24GB(2×batch_size×num_layers×num_heads×head_dim×seq_len×2字节)
- 缓冲区内存 = 框架开销(PyTorch/TensorFlow)约 *4 GB*
总内存需求约为160GB(具体值取决于激活内存和额外开销的大小),需多卡并行(如****4090 24G × 8)。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。