Coze、Dify实战全攻略(超详细),从零基础到落地应用,收藏这篇就够了!

当前,人工智能技术正以前所未有的速度迭代升级。在大模型的赋能下,AI智能体已从单一任务执行逐步演进为多智能体协同工作,构建起具备感知、记忆、推理与执行能力的“超级协作体”。这些智能体通过高效分工,在客服、销售、营销、创作等场景中形成强大的任务处理网络,不仅成为企业降本增效的核心引擎,也为个人办公与生活带来颠覆性变革。

然而,在技术快速更新、多智能体协作复杂度提升、平台选型困难的背景下,多数企业仍面临“技术门槛高、应用场景模糊、投资回报难量化”的落地难题。同时,个人用户如何将智能体技术转化为日常办公的提效工具,也亟需系统化的指导与实践支持。

为帮助企业及个人突破上述困境,将于2026年1月10日至11日举办第三期“AI智能体实战与企业自动化提效:Coze、Dify工作流落地与典型应用案例解析线上实训班”。本次课程以“智能体+知识库+AI办公+平台实操+企业落地+技术体系+案例解析”为核心,涵盖以下重点内容:

1、技术深度解析:从Prompt工程到RAG知识库,打造智能体的“最强大脑”;

2、平台实战教学:Coze/Dify/LangChain 手把手教学,零基础也能快速上手;

3、办公效率革命:飞书多维表格+智能体闭环,实现审批、报告生成自动化;

4、典型场景复现:合同审核、智能客服等8大应用案例,学完即用;

5、ROI精准测算:成本、时间、人力替代效果可视化,确保投资回报。

无论是构建企业级AI中台,还是开发个人办公提效应用,本次实训班都将提供从理论到落地的完整解决方案。

实训大纲:

模块一:AI 智能体发展趋势与架构通识

模块二:提示词工程与智能体思维训练

模块三:主流智能体平台技术与选型全景

模块四:RAG 机制与企业知识库设计

模块五:Coze 智能体实战教学

模块六:Dify 平台实战与企业部署

模块七:AI 办公提效系统(飞书等办公平台实战)

模块八:典型应用场景 + 企业级案例分析

模块九:系统化构建 AI 提效流程的方法论

教学形式:案例演示 + 跟随实操 + 互动答疑。

核心目标:通过紧密衔接的实战案例,强化提示词工程、RAG 知识库、智能体搭建与发布的核心技能。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

<think>好的,我现在需要回答用户关于CozeDify的问题。首先,我得回顾一下用户提供的引用内容,确保信息准确。 根据引用[1],Dify是开源的,需要用户自己提供大模型的API Key,这意味着用户需要承担相应的费用,尤其是处理大量数据时成本可能很高。但Dify的优点是提供了方便的代码嵌入方式,方便集成到自己的网页应用中。引用[2]提到Coze有模型广场,可以直接使用预训练的Bot,还有交互功能如开场白和建议问题。引用[3]比较了三个工具,指出Dify支持Ollama本地模型,适合数据隐私敏感的场景,而Coze在知识库管理和交互设计上有优势。 接下来,我需要整理这些信息,区分CozeDify的核心差异。费用方面,Dify需要自备API Key,成本可能高;Coze可能有托管服务,但不确定是否免费。功能上,Dify适合需要代码嵌入和本地部署的场景,Coze则强调快速搭建和预训练模型。隐私方面,Dify的本地模型支持更适合敏感数据。 用户可能关心如何选择这两个工具,所以需要从使用场景、成本、技术需求等方面对比。同时,生成的相关问题要覆盖性能、优化、应用场景等,但要根据引用内容调整,比如Dify的成本问题,Coze的交互功能。 需要确保回答结构清晰,分点说明差异,并引用正确的来源。同时,问题部分要引导用户深入思考各自工具的优势和适用情况。最后检查LaTeX格式是否正确,但用户问题中可能不涉及数学公式,所以暂时不需要使用。</think>### CozeDify对比分析 CozeDify均为AI应用开发平台,但定位和功能存在显著差异,以下是核心对比: --- #### **1. 核心定位** - **Dify** 开源框架,需用户自行提供大模型API Key(如GPT-4、Claude等),适合注重**数据隐私**和**代码自主可控**的场景。支持本地部署(如通过Ollama运行本地模型),适合企业级定制化需求[^1][^3]。 - **Coze** 提供一站式AI Bot开发平台,内置多模态大模型和预训练Bot(模型广场),无需自行管理模型API,适合快速搭建交互式应用(如客服助手、知识问答)[^2][^3]。 --- #### **2. 关键功能差异** | 能力项 | Dify | Coze | |--------------|-------------------------------|-------------------------------| | **数据接入** | 支持Notion同步、网页抓取 | 支持飞书、表格、图片上传 | | **知识库处理** | 智能分段+增强训练 | 基础分段+问答拆分 | | **成本控制** | 依赖用户API调用费用(高数据量成本高) | 平台托管模型,费用相对透明 | | **交互设计** | 需手动配置 | 内置“开场白”、“下一步问题建议”等交互优化 | | **部署方式** | 支持本地化部署(如Ollama) | 仅限云端使用 | --- #### **3. 典型应用场景** - **选择Dify的场景** - 需保护敏感数据(如医疗、金融)的本地化部署需求 - 希望深度定制AI工作流并集成到自有系统(代码嵌入友好) - 愿意承担大模型API调用成本的高自由度开发 - **选择Coze的场景** - 快速搭建对话式应用(如营销助手、FAQ机器人) - 无编码经验,依赖预训练Bot和模板 - 需多模态交互(如图片生成、语音处理)[^3] ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值