本节介绍欧几里得结构的两个基本不等式
1 柯西-施瓦茨(Cauchy–Schwarz)不等式
对任意向量x,y有:
证明:
观察实变量t的函数:
根据范数的定义,以及标量积的性质可知:
在上式中假定y不等于0且令:
又由于q(t)>=0,于是:
y=0的情形是显然的
2 三角不等式
对任意向量x,y有:
该定理的证明参照上一节
本节介绍欧几里得结构的两个基本不等式
对任意向量x,y有:
证明:
观察实变量t的函数:
根据范数的定义,以及标量积的性质可知:
在上式中假定y不等于0且令:
又由于q(t)>=0,于是:
y=0的情形是显然的
对任意向量x,y有:
该定理的证明参照上一节