本文介绍几个常用的与期望有关的不等式。
1 Cauchy–Schwarz不等式
Cauchy–Schwarz不等式有许多形式,这里只介绍它的期望函数的形式。
Cauchy–Schwarz不等式:
[ E ( X Y ) ] 2 ≤ E ( X 2 ) E ( Y 2 ) [\text{E}(XY)]^2 \leq \text{E}(X^2)\text{E}(Y^2) [E(XY)]2≤E(X2)E(Y2)
证明非常简单,只需先将 Y Y Y分解为相互正交的两部分(类似于OLS回归):
Y = E ( X Y ) E ( X 2 ) X + ( Y − E ( X Y ) E ( X 2 ) X ) Y=\dfrac{\text{E}(XY)}{\text{E}(X^2)}X+\left(Y-\dfrac{\text{E}(XY)}{\text{E}(X^2)}X\right) Y=E(X2)E(XY)X+(Y−E(X2)E(XY)X)
然后两边取平方,再求期望。注意到取平方后交叉项的期望
E [ E ( X Y ) E ( X 2 ) X ⋅ ( Y − E ( X Y ) E ( X 2 ) X ) ] = E ( X Y ) 2 E ( X 2 ) − E ( X Y ) 2 E ( X 2 ) = 0 \text{E}\left[\dfrac{\text{E}(XY)}{\text{E}(X^2)}X\cdot\left(Y-\dfrac{\text{E}(XY)}{\text{E}(X^2)}X\right)\right]=\dfrac{\text{E}(XY)^2}{\text{E}(X^2)}-\dfrac{\text{E}(XY)^2}{\text{E}(X^2)}=0 E[E(X2)E(XY)X⋅(Y−E(X2)E(XY)X)]=E(X2)E(XY)2−E(X2)E(XY)2=0
交叉项期望为 0 0 0,因此,只剩平方项的期望:
E ( Y 2 ) = E ( X Y ) 2 E (