Cauchy-Schwarz不等式、Hölder不等式与Minkowski不等式

本文详细介绍了概率论中的三个重要不等式:Cauchy-Schwarz不等式、Hölder不等式和Minkowski不等式。通过数学推导,展示了这些不等式的证明过程及其在期望值计算中的应用。
摘要由CSDN通过智能技术生成

本文介绍几个常用的与期望有关的不等式。

1 Cauchy–Schwarz不等式

Cauchy–Schwarz不等式有许多形式,这里只介绍它的期望函数的形式。

Cauchy–Schwarz不等式
[ E ( X Y ) ] 2 ≤ E ( X 2 ) E ( Y 2 ) [\text{E}(XY)]^2 \leq \text{E}(X^2)\text{E}(Y^2) [E(XY)]2E(X2)E(Y2)

证明非常简单,只需先将 Y Y Y分解为相互正交的两部分(类似于OLS回归):
Y = E ( X Y ) E ( X 2 ) X + ( Y − E ( X Y ) E ( X 2 ) X ) Y=\dfrac{\text{E}(XY)}{\text{E}(X^2)}X+\left(Y-\dfrac{\text{E}(XY)}{\text{E}(X^2)}X\right) Y=E(X2)E(XY)X+(YE(X2)E(XY)X)
然后两边取平方,再求期望。注意到取平方后交叉项的期望
E [ E ( X Y ) E ( X 2 ) X ⋅ ( Y − E ( X Y ) E ( X 2 ) X ) ] = E ( X Y ) 2 E ( X 2 ) − E ( X Y ) 2 E ( X 2 ) = 0 \text{E}\left[\dfrac{\text{E}(XY)}{\text{E}(X^2)}X\cdot\left(Y-\dfrac{\text{E}(XY)}{\text{E}(X^2)}X\right)\right]=\dfrac{\text{E}(XY)^2}{\text{E}(X^2)}-\dfrac{\text{E}(XY)^2}{\text{E}(X^2)}=0 E[E(X2)E(XY)X(YE(X2)E(XY)X)]=E(X2)E(XY)2E(X2)E(XY)2=0

交叉项期望为 0 0 0,因此,只剩平方项的期望:
E ( Y 2 ) = E ( X Y ) 2 E (

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值