《跃迁:成为高手的技术》PDF,笔记(上)

本书《跃迁》揭示了成为高手的思维模式和策略:转变认知,聚焦核心技能,联机学习和破局思维。高手善于在高价值区行动,利用联机学习寻找知识源头,通过番茄工作法管理注意力,识别并占据行业头部,实现跨越式成长。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

简介:
从这本书你可以得到:成为高手的思维模式和方法。找到最佳路径、借助趋势红利,撬动个人爆发式成长。

电子书下载地址:https://t00y.com/file/4015388-433049142

全书共分为五个部分:
1、高手的暗箱:转变思维方式,聚焦核心技能
2、高手战略:在高价值区,做正确的事
3、联机学习:找到知识源头,多人联机,实现1+1 > 2
4、破局思维:升级思维,解决复杂问题
5、内在修炼:跃迁者的内在修炼

今天是前两个部分的回顾。

一、高手的暗箱:
要成为高手,首先要做出三大转变:
1、认知方式的转变:我们学习的目标是调用信息、解决问题,所以要学会调用知识而非记忆知识。
2、思考方式的改变:要从独自思考者转变到联机的独立思考者。流程大概是:有个想法》丢出去&搜索相似信息》联机思考
3、核心竞争力的改变:逐步做到人机合一。用机器学习和处理信息,用大脑整合和创新思想,用系统思维思考问题。

未来的世界,很多行业可能会被机器替代,所以在选择一个行业时,我们可以思考:
	我今天做的事,机器能做吗?
	我今天做的事,会被外包吗?
	我今天做的事,明天会做得更好吗?

一开始你应该通过努力和精进达到“逃逸速度”,然后应该切换思维方式,利用平台和系统的力道,撬动自己去更远更好的地方。

说了这么多,到底什么是跃迁呢?
指电子从

### 原子跃迁反演的模拟方法 为了实现原子跃迁反演的过程,可以通过数值计算和物理建模的方完成。以下是基于 Python 的一种可能方案: #### 1. 物理背景描述 原子在受到外部光源激励时会发生能级跃迁,这种现象可以用量子力学中的薛定谔方程来描述。假设我们有一个简单的两能级系统,其中基态 \( |g\rangle \) 和激发态 \( |e\rangle \) 受到频率为 \( \omega_L \) 的激光场驱动,则系统的哈密顿量可以表示为[^3]: \[ H = \hbar\omega_0|e\rangle\langle e| - (\mu E(t)/2)(|e\rangle\langle g| + |g\rangle\langle e|), \] 这里 \( \omega_0 \) 是原子自然振荡频率,\( \mu \) 是偶极矩,\( E(t) \) 表示电场强度。 通过求解上述时间依赖的薛定谔方程,可以获得原子状态随时间的变化规律。进一步分析这些变化可以帮助推导出入射光波长与原子响应之间的关系。 #### 2. 数值仿真流程 下面是一个具体的程序框架用于模拟这一过程: ```python import numpy as np from scipy.integrate import solve_ivp import matplotlib.pyplot as plt def schrodinger_eq(t, y, omega0, delta, muE): """ 定义Schrodinger 方程的时间演化形. 参数: t (float): 时间变量 y (array-like): 当前时刻的状态向量 [c_g, c_e], 其中 c_g 和 c_e 分别代表基态和激发态的概率幅 omega0 (float): 自然振荡角频率 delta (float): 激光失谐参数 ωL−ω0 muE (complex): μ * E / hbar 返回: array-like: dy/dt """ cg, ce = y dcdtg = -(muE.conjugate() / 2) * ce dcete = (-delta + 1j*omega0)*ce - (muE/2)*cg return [dcdtg, dcete] # 初始化条件 omega0 = 1.0 # 频率单位化后的值 delta_values = np.linspace(-5, 5, 100) # 不同失谐情况下的扫描范围 muE = complex(0.1, 0) results = [] for delta in delta_values: sol = solve_ivp(schrodinger_eq, [0, 10], [1, 0], args=(omega0, delta, muE)) results.append(np.abs(sol.y[1])**2[-1]) # 获取最终激发概率 plt.plot(delta_values, results) plt.xlabel('Delta') plt.ylabel('Excitation Probability') plt.title('Atomic Transition Inversion Simulation') plt.show() ``` 这段代码定义了一个函数 `schrodinger_eq` 来表达 Schrödinger 方程,并使用 SciPy 中的积分器对其进行求解。最后绘制不同失谐情况下原子被激发的概率曲线图。 #### 3. 数据处理与反演算法 对于实际测量得到的数据集来说,往往需要借助优化技术寻找最佳匹配模型参数。比如采用最小二乘法拟合理论预测结果至实验观察值上,从而估计未知参量如激光波长或者物质特性常数等。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值