这边分享下raglow的agent,也就是工作流。
基础组件介绍
我们按照下图的数据介绍组件。
Begin(开始)组件
- • 启动工作流:Begin组件是工作流中的起始组件,自动出现在画布上,不能被删除。原文
- • 设置开场白或接受输入:可以设置开场白或接受用户输入的全局变量。
- • 在开始节点中,我们通过
2
设置agent的开白场 - • 通过点击
3
新增变量(需要注意的是,ragflow的变量是全局变量) - • 打开变量设置对话框以后,我们可以通过
4
设置输入框的类型
Retrieval(知识检索)组件
此组件用于从知识库中检索相关信息。选择知识库。如果没有检索到任何内容,将返回“空响应”。
-
•
-
- • 新增输入变量
3
:有两种类型的输入变量——引用和文本。引用e使用组件输出或用户输入作为数据源,Text使用固定文本作为查询。没有dify丰富,而且还有个问题,引用的时候能看到所有的变量
- • 新增输入变量
-
•
4
相似度阈值:设置用户查询与数据集中存储的块之间的相似度阈值,默认值为0.2 -
• 关键词相似度权重
5
:设置关键词相似度在综合相似度得分中的权重,默认值为0.7,向量相似度的权重为0.3。 -
• Top N
6
:从检索到的块中选择“Top N”块并传递给LLM,默认值为8。 -
• 重排模型
7
:可选,如果选择了重排模型,将使用加权关键词相似度和加权重排得分进行检索,但这会显著增加系统的响应时间。 -
• 知识库
8
:可以选择多个知识库,如果选择多个,必须保证它们使用相同的嵌入模型,否则会出现错误信息 -
• 空回复
9
:如果没有检索到数据,回复设置的默认值
Generate(生成回答)组件
此组件用于调用LLM生成文本,请注意提示词的设置。
-
• 在生成回答组件
1
中,我们通过2
可以修改修改组件的id -
• 通过
3
调整组件使用的模型,可以选择已经配置的模型服务 -
- • ragflow给了我们三组参数
4
用来控制模型的自由度,可以减少我们的思考 - • 需要注意的是,我们需要关注下最大
Token
根据自己的业务来即可。 - • 存在惩罚(Presence penalty):鼓励模型在响应中包含更多样化的标记,默认值为0.4
- • 频率惩罚(Frequency penalty):阻止模型在生成的文本中过于频繁地重复相同的单词或短语,默认值为0.7
- • ragflow给了我们三组参数
-
• 系统提示词
6
,通过提示词我们来指定模型的能力,一般会结合输入,需要注意的是ragflow不能通过{来快捷的获取变量引用 -
• 引用,主要用于多轮会话,是否引用以前的内容,12是引用多少个窗口,这个和token相结合
-
• 通过
7
新增变量以后,才可以在组件内使用,和dify一样
Interact(对话)组件
该组件用作机器人与人类之间的接口。它接收用户的输入并显示机器人的计算结果。
Categorize(问题分类)组件
此组件用于对文本进行分类。请指定类别的名称、描述和示例。每个类别都指向不同的下游组件。问题分类,你可以理解为是条件判断的增强,条件判断是基于具体的值,问题分类是使用大模型根据问题描述,以及示例,推导出的分类,并指向对应的流程。
- • 引用节点输出
1
并不是一个结构化的输出, - • 模型参数的调整和生成回答一样
- • 通过
3
和4
、5
设置大概什么情况归到这个分类。
Message (静态消息)组件
此组件用于向用户发送静态信息。您可以准备几条消息,这些消息将被随机选择。
Rewrite(问题优化)组件
此组件用于细化用户的提问。通常,当用户的原始提问无法从知识库中检索到相关信息时,此组件可帮助您将问题更改为更符合知识库表达方式的适当问题。
keyword( 关键词 )组件
该组件用于从用户的问题中提取关键词。Top N指定需要提取的关键词数量。比如用于我们之前的从数据库查询知识的场景,不用我们去处理了。
Switch(条件)组件
该组件用于根据前面组件的输出评估条件,并相应地引导执行流程。通过定义各种情况并指定操作,或在不满足条件时采取默认操作,实现复杂的分支逻辑。
这里可以通过引用组件的输出值作为比较条件,可以添加多个条件,且支持逻辑操作符。该组件可用于连接多个下游组件。它接收来自上游组件的输入并将其传递给每个下游组件。
在ragflow
中,有些节点的输出,只能指向一个节点,如果你需要并行操作的时候,需要添加集线器。
Template(模板转换)组件
该组件用于排版各种组件的输出。有助于将各种数据或信息源组织成特定格式,便于后续处理和展示
- • 1、支持Jinja2模板,会先将输入转为对象后进行模版渲染
- • 2、同时保留原使用{参数}字符串替换的方式
(循环)组件
该组件首先将输入以“分隔符”分割成数组,然后依次对数组中的元素执行相同的操作步骤,直到输出所有结果,可以理解为一个任务批处理器。 例如在长文本翻译迭代节点中,如果所有内容都输入到LLM节点,可能会达到单次对话的限制,上游节点可以先将长文本分割成多个片段,配合迭代节点对每个片段进行批量翻译,避免达到单次对话的LLM消息限制。
高级应用组件
高级应用组件主要是封装了一些能力。这些是我给它分的类,没看到官方的文档。主要以实际应用为主。这次简单的过一下功能,以及大致的用户,具体的使用还得具体使用的时候验证
invoke(Http)组件
该组件可以调用远程接口调用。将其他组件的输出作为参数或设置常量参数来调用远程函数。
- • 我们可以通过
1
设置请求地址 - • 请求方法
2
中目前只支持get、post、put三种方法 - •
3
可以自定义超时时间 - • 可以在
4
自定义请求头 - • 可以通过
5
设置代理 - • 通过
6
可以新增请求参数
通过这个invoke
组件,明显感受到设计这块的人,并没有考虑其他语言的通用性,典型的python接口规范。也不知道是不是实现比较复杂。
另一个方面,对于结构化数据,我们该返回一个什么样的格式?有没有特殊的要求?未知,只能自己去摸索。
网页爬虫
该组件可用于从指定url爬取html源码。
邮箱
发送邮件到指定邮箱
ExeSQL 组件
该组件通过SQL语句从相应的关系数据库中查询结果。支持MySQL,PostgreSQL,MariaDB。
通过界面盲猜
GitHub 插件
该组件用于从 https://github.com/ 搜索仓库。Top N 指定需要调整的搜索结果数量。
搜索、翻译、学术
还提供了搜索、翻译、学术相关的组件,具体怎么用,只能靠盲猜。后续结合官方的示例琢磨下。
通过上面的组件,我们可以看到ragflow
的交互难度,对与小白用户不友好,以前觉的腾讯元器的agent死难用,看了这个,觉的,嗯,腾讯的还行。
智能体应用
我们结合一个官方的agent示例,简单的了解下
使用客服模板创建。梳理了下示例
先看下整体流程
- • 红色的线代表整个运行流程。
- • 在这个过程中把问题也细化了
- • 也检索到了对应的内容
- • 一旦关闭了右侧的聊天框,再打开就没了,就体验来说和dify差的太多。
开始节点
作为交互程序,开始节点不需要设置什么。只设置好开白场即可。
问题分类
在每个分类下,都有对应的描述,和示例,32b的模型能流畅的运行。
缓解抱怨
细化问题
知识检索
根据知识库推导
发布应用
点击右上角的嵌入网站,我们可以看到一串html代码,我们把http连接拿到,直接在浏览器里可以访问。
总结
- • ragflow的的官方文档相对来说还是比较欠缺的,特别是用户交互这块。
- • ragflow的ui使用成本相对比较高,组件不知道返回什么,只能根据示例或意图推断
- • 使用ragflow建议是有技术底子的
- • 英文文档的描述习惯和中文还是有很大的差别的
说实话,用着有点崩溃,哈哈。
相关资料
清华DeepSeek相关资料
https://pan.quark.cn/s/5c1e8f268e02
北京大学DeepSeek相关资料
https://pan.quark.cn/s/918266bd423a
零基础使用DeepSeek
https://pan.quark.cn/s/17e07b1d7fd0
ollama的docker镜像
https://pan.quark.cn/s/e1383d4d8c1a
deepseek的模型(ollama上pull下来的)
https://pan.quark.cn/s/dd3d2d5aefb2
dify相关镜像
https://pan.quark.cn/s/093f68430c68
ragflow相关资料和模型
https://pan.quark.cn/s/aa29090b27ba
总入口(有时候会被屏蔽):
https://pan.quark.cn/s/d9539de91d14
如何零基础入门 / 学习AI大模型?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?
”“谁的饭碗又将不保了?
”等问题热议不断。
不如成为「掌握AI工具的技术人」
,毕竟AI时代,谁先尝试,谁就能占得先机!
想正式转到一些新兴的 AI 行业,不仅需要系统的学习AI大模型。同时也要跟已有的技能结合,辅助编程提效,或上手实操应用,增加自己的职场竞争力。
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高
那么我作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,希望可以帮助到更多学习大模型的人!至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
👉 福利来袭
CSDN大礼包:《2025最全AI大模型学习资源包》免费分享,安全可点 👈
全套AGI大模型学习大纲+路线
AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!
640套AI大模型报告合集
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
👉 福利来袭
CSDN大礼包:《2025最全AI大模型学习资源包》免费分享,安全可点 👈
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。