1.自编码器基本原理 概念 一种基于无监督学习的数据维度压缩和特征表达方法; 通过不断调整参数,重构经过维度压缩的输入样本,重构结果和输入样本的模式相同,重构结果的图像相对模糊。 应用 构建一种能够重构输入样本并进行特征表达的神经网络; 训练多层神经网络时,对样本训练得到参数初始值,当神经网络层数较多时,会面临梯度消失的问题,可以通过自编码器逐层训练参数并计算参数初始值。 原理 编码器: 解码器: