深度学习笔记整理(四)——自编码器

本文深入探讨自编码器的基本原理,包括其作为数据压缩和特征表示的方法,以及如何解决深层神经网络训练时的梯度消失问题。自编码器的变形包括降噪自编码器,通过引入噪声来提取更优特征;稀疏自编码器,通过稀疏正则化提升压缩效率;以及栈式自编码器,用于逐层特征提取。这些变形在预训练中有着广泛应用。
摘要由CSDN通过智能技术生成

1.自编码器基本原理

概念

  • 一种基于无监督学习数据维度压缩特征表达方法;
  • 通过不断调整参数,重构经过维度压缩的输入样本,重构结果和输入样本的模式相同,重构结果的图像相对模糊。

应用

  • 构建一种能够重构输入样本并进行特征表达的神经网络;
  • 训练多层神经网络时,对样本训练得到参数初始值,当神经网络层数较多时,会面临梯度消失的问题,可以通过自编码器逐层训练参数并计算参数初始值。

原理

  • 编码器:y=f(wx+b)
  • 解码器:
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值