Transformer的七十二变!12种魔改的Transformer模型大分享

但正如所有科技的进化,Transformer也在不断地被“魔改”以适应更复杂的任务和挑战。下面我们探讨了几种令人印象深刻的Transformer模型变体,它们通过创新的技术改进,解决了传统Transformer模型在处理长序列、计算效率和内存使用等方面的局限性。

前排提示,文末有大模型AGI-CSDN独家资料包哦!

1.稀疏注意力机制

稀疏注意力机制在Transformer中通过减少不必要的计算,降低模型的计算复杂度和内存需求,使得模型能够更高效地处理长序列数据,同时保持或提升模型性能。

1.1动态稀疏注意力(DSA)

动态稀疏注意力(DSA)是一种针对Transformer模型的优化技术,它通过动态地调整注意力模式来降低模型的计算复杂度。在传统的Transformer模型中,自注意力机制需要计算序列中每个元素与其他所有元素的关系,这导致了O(N^2)的时间和空间复杂度。DSA通过识别输入序列中的动态稀疏性,仅计算那些对最终结果有重要影响的元素关系,从而实现在保持模型性能的同时减少计算量。

论文名称:Transformer Acceleration with Dynamic Sparse Attention

论文地址:https://arxiv.org/abs/2110.11299

1.2探针稀疏注意力机制的门控Transformer(PS-GTr)

PS-GTr是一种结合了探针稀疏注意力机制和门控机制的Transformer模型。该模型在门控Transformer-XL(GTrXL)的基础上引入了探针稀疏注意力机制,旨在降低时间复杂度和空间复杂度,提高训练效率。PS-GTr通过在恒等映射重排和门控机制的基础上添加探针稀疏注意力,进一步减少了模型在处理长序列时的计算负担。

实验结果表明,PS-GTr在强化学习任务中的表现与GTrXL相当,但训练时间更短,内存占用更少。这一改进使得PS-GTr在资源受限的环境中更具优势,尤其是在需要处理长序列的强化学习应用中。

1.3 Combiner:全注意力Transformer与稀疏计算成本

Combiner是一种提供全注意力能力的Transformer模型,同时保持低计算和内存复杂度。其核心思想是将自注意力机制视为对每个位置嵌入的条件期望,并使用结构化因子分解近似条件分布。这种方法允许每个位置通过直接注意或通过对抽象的间接注意来关注所有其他位置,实现了对来自相应局部区域的嵌入的条件期望。

在多个图像和文本建模任务上,Combiner展现了SOTA(State of the Art)的性能。它通过利用现有稀疏Transformer中使用的稀疏注意力模式,激发了这种分解的设计,以实现充分注意力,从而产生相同的次二次成本(O(L log L)或O(L√L))。Combiner作为现有Transformer中注意力层的直接替代品,可以在通用框架中轻松实现,证明了其在实际应用中的有效性和灵活性。

根据您的请求,以下是Combiner模型的相关论文信息:

论文名称:Combiner: Full Attention Transformer with Sparse Computation Cost论文地址:https://arxiv.org/abs/2107.05768

1.4 总结

动态稀疏注意力(DSA)、探针稀疏注意力机制的门控Transformer(PS-GTr)和Combiner模型通过引入稀疏性,显著降低了Transformer模型的计算复杂度。这些模型不仅保持了性能,还在处理大规模数据集时展现了更高的效率。特别是在长序列任务中,这些变体通过减少不必要的计算,实现了与全注意力模型相当的性能,同时大幅降低了资源消耗。

2.Transformer处理长文本

2.1 Transformer-XL:超越固定长度上下文

Transformer-XL是一种专为处理长文本而设计的Transformer模型。它通过引入段级别的循环机制和新的位置编码方案,使得模型能够捕捉跨序列的依赖关系,从而有效地处理超过固定长度的上下文。在一项研究中,Transformer-XL在长序列任务上的表现超越了标准Transformer,其准确率提高了18%,同时在评估期间比普通Transformer快1800倍。这一改进使得Transformer-XL在长文本处理任务,如文档分类和机器翻译中,展现出显著的优势。

1.论文名称:Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context

2.论文地址:https://arxiv.org/abs/1901.02860

3.开源代码:https://github.com/kimiyoung/transformer-xl

2.2 Longformer:长文档Transformer

Longformer是另一种针对长文本优化的Transformer模型。它通过引入一个与序列长度呈线性关系的稀疏注意力机制,解决了传统Transformer在处理长序列时面临的计算复杂度问题。Longformer在字符级语言建模任务上表现出色,并在arXiv摘要生成数据集上展示了其有效性。实验数据显示,Longformer能够处理数千个标记或更长的文档,同时在各种下游任务上取得了最先进的结果。

1.论文名称:Longformer: The Long-Document Transformer

2.论文地址:https://arxiv.org/abs/2004.05150

3.开源代码:https://github.com/allenai/longformer

2.3 Linformer:具有线性复杂度的自注意力机制

Linformer提出了一种新的自注意力机制,将复杂度从O(N^2)降低到O(N),同时保持性能不变。这一改进使得Linformer在处理长序列时更加节省时间和内存。在自然语言处理应用中,Linformer比标准的Transformer模型更加高效,尤其是在长序列的训练和部署上。Linformer的成功案例包括在大规模文本分类任务中的应用,其中它在保持高准确率的同时,显著减少了计算资源的消耗。

1.论文名称:Linformer: Self-Attention with Linear Complexity

2.论文地址:https://arxiv.org/abs/2006.04768

3.开源代码:https://github.com/lucidrains/linformer

2.4 Reformer:高效的Transformer

Reformer通过使用局部敏感哈希替换点积注意力,将复杂度从O(L^2)降低到O(L log L),同时使用可逆残差层代替标准残差,允许只存储一次激活。这些技术使得Reformer在长序列上表现相当,但更内存高效和更快。在一项比较研究中,Reformer在处理长达10,000个标记的序列时,比标准Transformer模型快了3倍,同时使用了更少的内存。

1.论文名称:Reformer: The Efficient Transformer

2.论文地址:https://arxiv.org/abs/2001.04451

3.开源代码:https://github.com/cerebroai/reformers/

2.5 Infini-Transformer:无限上下文Transformer

Infini-Transformer通过引入压缩记忆单元,支持无限长的上下文处理。这种设计使得模型能够在处理后续序列时回顾以前的上下文信息,从而支持无限长的输入处理。Infini-Transformer在长文本建模任务中的表现超过了其他Transformer变体,如Transformer-XL和记忆Transformer,同时实现了超过100倍的压缩比,并在困惑度评分上取得了进一步改进。这一创新使得Infini-Transformer在处理极长输入时,如书籍摘要任务,达到了新的最佳状态。

1.论文名称:Leave No Context Behind: Efficient Infinite Context Transformers with Infini-attention

2.论文地址:https://arxiv.org/pdf/2404.07143.pdf

3.开源代码:https://github.com/cerebroai/reformers

2.6 总结

Transformer-XL、Longformer和Linformer模型针对长文本处理进行了优化。它们通过引入线性或次线性复杂度的注意力机制,使得模型能够处理更长的序列,同时保持或提升了模型的性能。这些改进对于需要处理长距离依赖关系的任务,如文档分类和机器翻译,具有重要意义。

3. Transformer运行提效

3.1动态稀疏注意力(DSA)的效率提升

动态稀疏注意力(DSA)通过自适应地调整注意力模式,显著降低了Transformer模型的计算复杂度。在传统的Transformer模型中,自注意力层的时间复杂度为O(N^2),而DSA通过仅计算对最终结果有重要影响的元素关系,将复杂度降低到O(N log N)。这一改进在处理长序列时尤为重要,因为它减少了模型的计算资源消耗。实验结果表明,DSA在保持模型准确率的同时,大幅降低了计算量,使得Transformer模型在大规模数据集上的应用变得更加高效。

3.2 PS-GTr的效率与性能平衡

探针稀疏注意力机制的门控Transformer(PS-GTr)在门控Transformer-XL(GTrXL)的基础上,进一步降低了时间复杂度和空间复杂度。PS-GTr通过引入探针稀疏注意力机制,减少了模型在处理长序列时的计算负担。实验数据显示,PS-GTr在强化学习任务中的表现与GTrXL相当,但训练时间更短,内存占用更少。这一改进使得PS-GTr在资源受限的环境中更具优势,尤其是在需要处理长序列的强化学习应用中。

3.3 Combiner的全注意力能力与低计算成本

Combiner通过结构化因子分解近似条件分布,提供了全注意力能力的同时保持低计算和内存复杂度。这种方法允许每个位置通过直接注意或通过对抽象的间接注意来关注所有其他位置,实现了对来自相应局部区域的嵌入的条件期望。Combiner在多个图像和文本建模任务上展现了SOTA性能,同时利用现有稀疏Transformer中使用的稀疏注意力模式,激发了这种分解的设计,以实现充分注意力,从而产生相同的次二次成本(O(L log L)或O(L√L))。Combiner作为现有Transformer中注意力层的直接替代品,可以在通用框架中轻松实现,证明了其在实际应用中的有效性和灵活性。

3.4 Reformer的长序列处理效率

Reformer通过使用局部敏感哈希替换点积注意力,将复杂度从O(L^2)降低到O(L log L),同时使用可逆残差层代替标准残差,允许只存储一次激活。这些技术使得Reformer在长序列上表现相当,但更内存高效和更快。在一项比较研究中,Reformer在处理长达10,000个标记的序列时,比标准Transformer模型快了3倍,同时使用了更少的内存。这一改进使得Reformer在处理长序列时,如自然语言处理中的长文档摘要任务,具有显著的性能优势。

3.5 Infini-Transformer的无限上下文处理

Infini-Transformer通过引入压缩记忆单元,支持无限长的上下文处理。这种设计使得模型能够在处理后续序列时回顾以前的上下文信息,从而支持无限长的输入处理。Infini-Transformer在长文本建模任务中的表现超过了其他Transformer变体,如Transformer-XL和记忆Transformer,同时实现了超过100倍的压缩比,并在困惑度评分上取得了进一步改进。这一创新使得Infini-Transformer在处理极长输入时,如书籍摘要任务,达到了新的最佳状态。

3.6 总结

Reformer和Infini-Transformer模型通过技术创新,提高了Transformer模型的运行效率。Reformer通过局部敏感哈希和可逆残差层减少了内存使用和计算复杂度,而Infini-Transformer通过压缩记忆单元支持无限长的上下文处理。这些模型在长序列任务中展现出了显著的性能优势,同时降低了资源消耗。

4.卷积Attention

4.1 Conformer:卷积增强的Transformer

Conformer是一种结合了卷积神经网络(CNN)和Transformer的模型,专门用于语音识别任务。它通过在局部捕捉音频序列的特征和全局依赖关系的同时,实现了对语音信号的高效处理。Conformer模型在LibriSpeech基准测试中取得了显著的性能提升,即使在不使用语言模型的情况下,也能达到2.1%/4.3%的词错误率(WER),而在使用外部语言模型的情况下,WER更是降至1.9%/3.9%。此外,Conformer还具有较小的模型尺寸,仅包含10M参数,这使得它在资源受限的设备上更具应用潜力。

4.2 Lite Transformer:长短范围注意力的轻量级Transformer

Lite Transformer是一种为移动设备和资源受限环境设计的轻量级Transformer架构。它通过长短范围注意力(LSRA)机制,将一部分注意力头专门用于局部上下文建模(通过卷积),而另一部分头则专注于长距离关系建模(通过注意力)。在三个语言任务上的实验结果表明,Lite Transformer在性能上始终优于标准Transformer。特别是在WMT’14英法翻译任务中,Lite Transformer在受限资源下比标准Transformer高出1.2/1.7 BLEU分数,这证明了其在效率和性能上的显著优势。

4.3 CBAM:卷积块注意力模块

CBAM(Convolutional Block Attention Module)是一种集成在CNN中的注意力模块,它通过在通道和空间两个维度上分别推导出注意力图,然后将这些注意力图乘以输入特征图以进行自适应特征细化。CBAM作为一个轻量级的通用模块,可以无缝集成到任何CNN架构中,并且可以与基础CNN一起进行端到端训练。在ImageNet-1K、MS COCO检测和VOC 2007检测数据集上的广泛实验表明,CBAM能够一致地提升不同模型在分类和检测性能上的表现,证明了其广泛的适用性和有效性。

4.4 Attention Augmented Convolutional Networks:用自注意力增强卷积

谷歌大脑提出的Attention Augmented Convolutional Networks(AA-CNN)是一种将自注意力机制融入卷积神经网络的模型。这种模型通过在卷积特征图上增加自注意力特征图来增强模型的全局相关性捕捉能力。实验结果表明,AA-CNN在图像分类和目标检测任务上均取得了显著的性能提升。特别是在ImageNet分类任务上,AA-CNN实现了比ResNet50基准高出1.3%的top-1准确率,并且在COCO目标检测任务上超过了RetinaNet基准1.4 mAP,显示了自注意力机制在增强卷积网络性能方面的潜力。

4.5 Dynamic Convolutional Attention Module:动态卷积注意力模块

Dynamic Convolutional Attention Module(DyCAM)是一种动态调整卷积核大小的注意力模块。它通过在卷积操作前对输入特征图进行自适应的注意力加权,从而实现对不同区域特征的不同处理。DyCAM能够根据输入数据的特征动态调整卷积核,使得模型能够更加灵活地捕捉局部特征,同时保持对全局上下文的敏感性。这种动态调整机制使得DyCAM在处理具有不同尺度特征的数据时,如图像和视频,展现出更好的适应性和性能。

4.6 总结

Conformer、Lite Transformer、CBAM、AA-CNN和DyCAM模型通过将卷积神经网络与Transformer模型相结合,提升了模型在语音识别、自然语言处理和计算机视觉任务中的表现。这些模型不仅提高了特征提取的能力,还增强了模型对局部和全局信息的捕捉能力,从而在多个任务中实现了性能的提升。

总体而言,这些Transformer模型的变体展示了在不同领域和任务中的创新应用和显著性能提升。它们的成功案例证明了Transformer架构的灵活性和可扩展性,以及在解决实际问题中的潜力。随着研究的深入和技术的进步,我们有理由相信Transformer模型及其变体将在未来的人工智能领域发挥更加重要的作用。

读者福利:如果大家对大模型感兴趣,这套大模型学习资料一定对你有用

对于0基础小白入门:

如果你是零基础小白,想快速入门大模型是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。

包括:大模型学习线路汇总、学习阶段,大模型实战案例,大模型学习视频,人工智能、机器学习、大模型书籍PDF。带你从零基础系统性的学好大模型!

😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

👉AI大模型学习路线汇总👈

大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

👉大模型实战案例👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

在这里插入图片描述

👉大模型视频和PDF合集👈

观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
在这里插入图片描述
在这里插入图片描述

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

👉获取方式:

😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

Transformer是一种基于自注意力机制的神经网络模型,被广泛应用于自然语言处理任务。虽然Transformer在很多任务上取得了很好的效果,但也存在一些改进的空间。以下是一些常见的Transformer改进方法: 1. 多头注意力机制:传统的Transformer模型使用单头注意力机制来计算注意力权重,而多头注意力机制引入了多个注意力头,可以并行地学习多种表示。这样可以更好地捕捉不同语义层面的相关性,提升了模型的表达能力。 2. 残差连接和层归一化:Transformer模型中引入了残差连接和层归一化,这两种技术可以帮助解决梯度消失和梯度爆炸的问题,并且有利于模型的训练和收敛。 3. 编码器-解码器结构:Transformer最初是为了解决机器翻译任务而设计的,它采用了编码器-解码器结构。编码器用于将输入序列编码为上下文向量,解码器则根据上下文向量生成输出序列。这种结构可以应用于其他序列生成任务,如文本摘要、对话生成等。 4. 自适应计算序列长度:传统Transformer模型在训练时需要固定长度的输入序列,这限制了模型的输入长度。为了解决这个问题,一些改进方法引入了自适应计算序列长度的机制,如长短期记忆网络(LSTM)或卷积神经网络(CNN)。 5. 上下文感知的位置编码:传统Transformer使用固定的位置编码来表示单词在序列中的位置信息,这可能导致模型对位置信息的过度依赖。一些改进方法引入了上下文感知的位置编码,根据输入序列的内容动态地计算位置编码,以更好地捕捉单词之间的关系。 这些改进方法可以提高Transformer模型在各种自然语言处理任务上的性能和泛化能力。不同的改进方法可以根据具体任务和数据集的特点选择和组合使用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值