8 - 三重积分、曲线、曲面积分

8 - 三重积分、曲线、曲面积分


一、基本框架

主要的内容为 一般的三重积分、第一型曲线/曲面积分、第二型曲线/曲面积分

曲线、曲面积分表示积分区域是曲线、曲面

(一)三重积分

1)基本性质(7个)
  1. 可积函数必有界
  2. 线性性 / 可加性
  3. 保号性
  4. 估值定理
  5. 中值定理
  6. 一般对称性
  7. 轮换对称性
2)三种基本坐标系
1. 直角坐标系
2. 柱面坐标系

{ x = r c o s θ y = r s i n θ z = z ∭ Ω f ( x , y , z )   d x d y d z = ∭ Ω f ( r c o s θ , r s i n θ , z )   r d r d θ d z \begin{aligned} &\begin{cases} x=rcos\theta \\ y=rsin\theta \\ z=z \\ \end{cases} \\ \iiint_\Omega f(x,y,z)\ dxdydz&=\iiint_\Omega f(rcos\theta,rsin\theta,z)\ rdrd\theta dz \end{aligned} Ωf(x,y,z) dxdydzx=rcosθy=rsinθz=z=Ωf(rcosθ,rsinθ,z) rdrdθdz

3. 球坐标系

{ x = r c o s θ s i n φ y = r s i n θ s i n φ z = r c o s φ ∭ Ω f ( x , y , z )   d x d y d z = ∭ Ω f ( r c o s θ s i n φ , r s i n θ s i n φ , r c o s φ )   r 2 s i n φ   d r d θ d z \begin{aligned} &\begin{cases} x=rcos\theta sin\varphi \\ y=rsin\theta sin\varphi \\ z=rcos\varphi \\ \end{cases} \\ \iiint_\Omega f(x,y,z)\ dxdydz&=\iiint_\Omega f(rcos\theta sin\varphi,rsin\theta sin\varphi,rcos\varphi)\ r^2sin\varphi \ drd\theta dz \end{aligned} Ωf(x,y,z) dxdydzx=rcosθsinφy=rsinθsinφz=rcosφ=Ωf(rcosθsinφ,rsinθsinφ,rcosφ) r2sinφ drdθdz

3)基本处理方式

注意角度定限的时候需要 数形结合 的去分析函数

1. “先一后二”

例如,先对 z z z 积分,再对 X O Y XOY XOY 面上积分;相当于把 z z z 方向上的积分值转化成了 X O Y XOY XOY 面上的 面密度

一般当积分区域是个 柱形空间 的时候便于计算

2. “先二后一”

例如,先对 X O Y XOY XOY 面积分,再对 z z z 积分;相当于把与 X O Y XOY XOY 平行的平面积分值转化为了 z z z线密度

一般当积分区域是个 旋转曲面 的时候便于计算

3. 逆用形心公式

相应的有 线、面、体 积分;有 x ‾ 、 y ‾ 、 z ‾ \overline x、\overline y、\overline z xyz
x ‾ = ∭ Ω x d v ∭ Ω d v ⇒ ∭ Ω x d v = x ‾ ⋅ V ( V   为   Ω 的 体 积 ) x ‾ = ∬ Σ x d S ∬ Σ d S ⇒ ∬ Σ x d S = x ‾ ⋅ S ( S   为   Σ 的 面 积 ) x ‾ = ∫ Γ x d s ∫ Γ d s ⇒ ∫ Γ x d S = x ‾ ⋅ l Γ ( l Γ   为   Γ 的 长 度 ) \begin{aligned} \overline x =\frac{\iiint_\Omega xdv}{\iiint_\Omega dv} &\Rightarrow \iiint_\Omega xdv=\overline x \cdot V\qquad(V\ 为 \ \Omega的体积) \\ \overline x =\frac{\iint_\Sigma xdS}{\iint_\Sigma dS} &\Rightarrow \iint_\Sigma xdS=\overline x \cdot S\qquad(S\ 为 \ \Sigma的面积) \\ \overline x =\frac{\int_\Gamma xds}{\int_\Gamma ds} &\Rightarrow \int_\Gamma xdS=\overline x \cdot l_\Gamma\qquad(l_\Gamma\ 为 \ \Gamma的长度) \end{aligned} x=ΩdvΩxdvx=ΣdSΣxdSx=ΓdsΓxdsΩxdv=xV(V  Ω)ΣxdS=xS(S  Σ)ΓxdS=xlΓ(lΓ  Γ)

4. 换元法

类似于代入参数方程


(二)第一型 曲线、曲面 积分 的一般处理方法

第一型曲线、曲面积分指被积函数是 标量场

其基本性质 同一般的积分 / 三重积分

1)曲线积分化为定积分(代入参数方程)
1. 参数方程描述曲线

d s = [ x ′ ( t ) ] 2 + [ y ′ ( t ) ] 2 + [ z ′ ( t ) ] 2 d t ds=\sqrt{[x^\prime(t)]^2+[y^\prime(t)]^2+[z^\prime(t)]^2}dt ds=[x(t)]2+[y(t)]2+[z(t)]2 dt

既然有参数方程,就存在 转化为参数方程构造出参数方程

2. 极坐标方程描述曲线

d s = [ r ( θ ) ] 2 + [ r ′ ( θ ) ] 2 d t ds=\sqrt{[r(\theta)]^2+[r^\prime(\theta)]^2}dt ds=[r(θ)]2+[r(θ)]2 dt

x = c o s θ ,   y = s i n θ x=cos\theta,\ y=sin\theta x=cosθ, y=sinθ ,按照 ① 的方式代入,正好得到的就是极坐标的微元

2)曲面积分化为二重积分(投影法)
  1. Σ \Sigma Σ 投影到某一平面 D D D

  2. z = f ( x , y ) z=f(x,y) z=f(x,y) F ( x , y , z ) = 0 F(x,y,z)=0 F(x,y,z)=0 代入被积函数

  3. 把曲面积分化为二重积分
    ∬ Σ f ( x , y , z ) d S = ∬ D f ( x , y , z ( x , y ) ) 1 + ( z x ′ ) 2 + ( z y ′ ) 2 d x d y \iint_\Sigma f(x,y,z)dS=\iint_D f(x,y,z(x,y))\sqrt{1+(z^\prime_x)^2+(z^\prime_y)^2}dxdy Σf(x,y,z)dS=Df(x,y,z(x,y))1+(zx)2+(zy)2 dxdy
    空间曲面下的二重积分难以计算 / 定限,而投影之后可以把积分区域化为平面,于是能够 定限 / 计算 了

    注意: 投影点不能重合,否则需要分段处理

3)边界方程代入被积函数

即积分区域是 用等式描述 的,就可以直接代入等式简化积分运算,例如下面的描述方式都可以直接带入:

  • 空间曲线方程
    { x = φ ( t ) y = ψ ( t ) z = ω ( t ) \begin{cases} x=\varphi(t) \\ y=\psi(t) \\ z=\omega(t) \end{cases} x=φ(t)y=ψ(t)z=ω(t)
  • 空间曲面方程
    F ( x , y , z ) = 0 F(x,y,z)=0 F(x,y,z)=0
    但是有些积分区域不是用等式描述的,所以不能带入,例如
  • 不等式描述
    D = { ( x , y ) ∣ 2 x 2 + y 2 ≤ a 2 } D=\{(x,y) |2x^2+y^2\leq a^2\} D={(x,y)2x2+y2a2}
    不过这个可以用变形的极坐标处理
  • 上下限描述
    如积分区域由 y = − x 2 + 1 y=-x^2+1 y=x2+1 y = 0 y=0 y=0 围成
    这个可以代入积分限直接求积分
4)利用对称性和轮换对称性
5)形心公式逆用
6)常见物理应用
1. 找重心 / 形心

参照形心公式

2. 求转动惯量

转动惯量核心公式 I = m r 2 I=mr^2 I=mr2

3. 求引力

引力核心公式 F = G M m r 2 F = \frac{GMm}{r^2} F=r2GMm


(三)第二型 曲线、曲面 积分的一般处理办法

第二型曲线、曲面积分指被积函数是 矢量场

第二型积分的形式,如:
∫ Γ F ⃗ ( x , y , z ) ⋅ d r ⃗ = ∫ Γ P ( x , y , z ) d x + Q ( x , y , z ) d y + R ( x , y , z ) d z \int_\Gamma\vec F(x,y,z)\cdot d\vec r=\int_\Gamma P(x,y,z)dx+Q(x,y,z)dy+R(x,y,z)dz ΓF (x,y,z)dr =ΓP(x,y,z)dx+Q(x,y,z)dy+R(x,y,z)dz

【注】 :不满足格林、高斯、斯托克斯公式条件时,可以割补区间使之满足条件

1)基本性质 (三个)
  1. 线性性
  2. 可加性
  3. 有向性
2)曲线积分处理方法
1. 化为定积分(代入参数方程)

曲线由 参数方程 给出时(设参数 t : α → β t:\alpha \rightarrow \beta tαβ
本质上是 变量代换 ,如 d x → d x ( t ) → x ′ ( t ) d t dx \rightarrow dx(t) \rightarrow x^\prime(t)dt dxdx(t)x(t)dt
∫ Γ P ( x , y ) d x + Q ( x , y ) d y = ∫ α β P [ x ( t ) , y ( t ) ] x ′ ( t ) + Q [ x ( t ) , y ( t ) ] y ′ ( t )   d t \int_\Gamma P(x,y)dx+Q(x,y)dy=\int_\alpha^\beta{P[x(t),y(t)]x^\prime(t)+Q[x(t),y(t)]y^\prime(t)}\ dt ΓP(x,y)dx+Q(x,y)dy=αβP[x(t),y(t)]x(t)+Q[x(t),y(t)]y(t) dt

2. 格林公式(封闭平面曲线-平面)

∮ L P ( x , y ) d x + Q ( x , y ) d y = ∬ D ( ∂ Q ∂ x − ∂ P ∂ y ) d σ \oint_LP(x,y)dx+Q(x,y)dy=\iint_D(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y})d\sigma LP(x,y)dx+Q(x,y)dy=D(xQyP)dσ

【注】 :不满足格林、高斯、斯托克斯公式条件时,可以割补区间使之满足条件

3. 斯托克斯公式(封闭空间曲线-曲面)

【注】 :不满足格林、高斯、斯托克斯公式条件时,可以割补区间使之满足条件

∮ L P d x + Q d y + R d z = ∬ Σ ∣ d y d z d z d x d x d y ∂ ∂ x ∂ ∂ y ∂ ∂ z P Q R ∣ d S = ∬ Σ ∣ c o s α c o s β c o s γ ∂ ∂ x ∂ ∂ y ∂ ∂ z P Q R ∣ d S \oint_LPdx+Qdy+Rdz=\iint_\Sigma \begin{vmatrix} dydz & dzdx & dxdy \\ \frac\partial{\partial x} & \frac\partial{\partial y} & \frac\partial{\partial z} \\ P & Q & R \\ \end{vmatrix} dS= \iint_\Sigma \begin{vmatrix} cos\alpha & cos\beta & cos\gamma \\ \frac\partial{\partial x} & \frac\partial{\partial y} & \frac\partial{\partial z} \\ P & Q & R \\ \end{vmatrix} dS LPdx+Qdy+Rdz=ΣdydzxPdzdxyQdxdyzRdS=ΣcosαxPcosβyQcosγzRdS

其中 Σ \Sigma Σ 为光滑有向曲面片, L L L 为逐段光滑的 Σ \Sigma Σ 的边界,他的方向与 Σ \Sigma Σ 的法向量成右手系, P 、 Q 、 R P、Q、R PQR 有连续一阶偏导数
( c o s α , c o s β , c o s γ ) (cos\alpha,cos\beta,cos\gamma) (cosα,cosβ,cosγ) 为曲面 Σ \Sigma Σ 的单位法向量

3)曲面积分处理方法
1. 化为二重积分(投影法)

以投影到 XOY 面为例

  1. Σ \Sigma Σ 投影到某一平面 D D D

  2. z = f ( x , y ) z=f(x,y) z=f(x,y) F ( x , y , z ) = 0 F(x,y,z)=0 F(x,y,z)=0 代入被积函数

  3. d x d y dxdy dxdy 改写成 ± d x d y \pm dxdy ±dxdy Σ \Sigma Σ 方向向上(法向量与 Z 轴夹角为锐角)时取 + + + ,否则取 − - ,于是得到

∬ Σ f ( x , y , z ) d x d y = ± ∬ D f ( x , y , z ( x , y ) ) d x d y \iint_\Sigma f(x,y,z)dxdy=\pm\iint_Df(x,y,z(x,y))dxdy Σf(x,y,z)dxdy=±Df(x,y,z(x,y))dxdy

空间曲面下的二重积分难以计算 / 定限,而投影之后可以把积分区域化为平面,于是能够 定限 / 计算 了

注意: 投影点不能重合,否则需要分段处理

2. 高斯公式(空间封闭曲面-体)

∯ Σ P d y d z + Q d x d z + R d x d y = ∭ Ω ( ∂ P ∂ x + ∂ Q ∂ y + ∂ R ∂ z ) d v \oiint_\Sigma Pdydz+Qdxdz+Rdxdy=\iiint_\Omega(\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}+\frac{\partial R}{\partial z})dv ΣPdydz+Qdxdz+Rdxdy=Ω(xP+yQ+zR)dv

Σ \Sigma Σ Ω \Omega Ω 的整个边界曲面的 外侧

【注】 :不满足格林、高斯、斯托克斯公式条件时,可以割补区间使之满足条件

4)利用保守场性质

当被积函数是个保守场的时候,积分值 与积分路径无关 ,于是可以自己构建便于计算的积分路径
但是注意不要经过无定义点,如被积函数是 1 x 2 + y 2 \frac1{x^2+y^2} x2+y21 时的 ( 0 , 0 ) (0,0) (0,0)

1. 保守场的判断条件
  • 判断向量场 F ⃗ = ( P ( x , y ) ,   Q ( x , y ) ) \vec F=(P(x,y),\ Q(x,y)) F =(P(x,y), Q(x,y)) 为保守场的条件:
    ∂ Q ∂ x = ∂ P ∂ y ⟺ ∣ ∂ ∂ x ∂ ∂ y P Q ∣ = 0 \frac{\partial Q}{\partial x}=\frac{\partial P}{\partial y} \Longleftrightarrow \begin{vmatrix} \frac{\partial }{\partial x} & \frac{\partial}{\partial y} \\ P & Q \end{vmatrix} =0 xQ=yPxPyQ=0

  • 判断向量场 F ⃗ ( P ( x , y , z ) ,   Q ( x , y , z ) ,   R ( x , y , z ) ) \vec F(P(x,y,z),\ Q(x,y,z),\ R(x,y,z)) F (P(x,y,z), Q(x,y,z), R(x,y,z)) 为保守场的条件:
    ∂ P ∂ y = ∂ Q ∂ x , ∂ P ∂ z = ∂ R ∂ x , ∂ Q ∂ z = ∂ R ∂ y ⟺ ∣ x ^ y ^ z ^ ∂ ∂ x ∂ ∂ y ∂ ∂ z P Q R ∣ = 0 \frac{\partial P}{\partial y}=\frac{\partial Q}{\partial x},\frac{\partial P}{\partial z}=\frac{\partial R}{\partial x},\frac{\partial Q}{\partial z}=\frac{\partial R}{\partial y} \\ \Longleftrightarrow \\ \begin{vmatrix} \hat x & \hat y & \hat z \\ \frac{\partial }{\partial x} & \frac{\partial }{\partial y} & \frac{\partial }{\partial z} \\ P & Q & R \\ \end{vmatrix} = 0 yP=xQzP=xRzQ=yRx^xPy^yQz^zR=0

【注意】 诸如被积函数含有 1 x 2 + y 2 \frac{1}{x^2+y^2} x2+y21 时,积分区域不含有 ( 0 , 0 ) (0,0) (0,0) 点,所以自行选择积分路径时,需要绕开 ( 0 , 0 ) (0,0) (0,0)


二、表格化总结

(一)符号说明

符号含义符号含义
// L L L直线
d s ds ds曲线的弧长微元 Γ \Gamma Γ曲线
d σ d\sigma dσ平面的面积微元 D D D平面
d S dS dS曲面的面积微元 Σ \Sigma Σ曲面
d v dv dv物体的体积微元 Ω \Omega Ω空间区域

(二)方程变换

积分类型方程变换
第一型 曲线 积分 d s = [ x ′ ( t ) ] 2 + [ y ′ ( t ) ] 2 + [ z ′ ( t ) ] 2 d t ds=\sqrt{[x^\prime(t)]^2+[y^\prime(t)]^2+[z^\prime(t)]^2}dt ds=[x(t)]2+[y(t)]2+[z(t)]2 dt d s = [ r ( θ ) ] 2 + [ r ′ ( θ ) ] 2 d t ds=\sqrt{[r(\theta)]^2+[r^\prime(\theta)]^2}dt ds=[r(θ)]2+[r(θ)]2 dt
第一型 曲面 积分 ∬ Σ f ( x , y , z ) d S = ∬ D f ( x , y , z ( x , y ) ) 1 + ( z x ′ ) 2 + ( z y ′ ) 2 d x d y \iint_\Sigma f(x,y,z)dS=\iint_D f(x,y,z(x,y))\sqrt{1+(z^\prime_x)^2+(z^\prime_y)^2}dxdy Σf(x,y,z)dS=Df(x,y,z(x,y))1+(zx)2+(zy)2 dxdy (以投影到 XOY 为例)
第二型 曲线 积分 ∫ Γ P ( x , y ) d x + Q ( x , y ) d y = ∫ α β P [ x ( t ) , y ( t ) ] x ′ ( t ) + Q [ x ( t ) , y ( t ) ] y ′ ( t )   d t \int_\Gamma P(x,y)dx+Q(x,y)dy=\int_\alpha^\beta{P[x(t),y(t)]x^\prime(t)+Q[x(t),y(t)]y^\prime(t)}\ dt ΓP(x,y)dx+Q(x,y)dy=αβP[x(t),y(t)]x(t)+Q[x(t),y(t)]y(t) dt
第二型 曲面 积分 ∬ Σ f ( x , y , z ) d x d y = ± ∬ D f ( x , y , z ( x , y ) ) d x d y \iint_\Sigma f(x,y,z)dxdy=\pm\iint_Df(x,y,z(x,y))dxdy Σf(x,y,z)dxdy=±Df(x,y,z(x,y))dxdy (以投影到 XOY 为例)

(三)格林、高斯、斯托克斯公式

名称公式
格林公式 ∮ L P ( x , y ) d x + Q ( x , y ) d y = ∬ D ( ∂ Q ∂ x − ∂ P ∂ y ) d σ \oint_LP(x,y)dx+Q(x,y)dy=\iint_D(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y})d\sigma LP(x,y)dx+Q(x,y)dy=D(xQyP)dσ
斯托克斯公式 ∮ L P d x + Q d y + R d z = ∬ Σ ∣ d y d z d z d x d x d y ∂ ∂ x ∂ ∂ y ∂ ∂ z P Q R ∣ d S = ∬ Σ ∣ c o s α c o s β c o s γ ∂ ∂ x ∂ ∂ y ∂ ∂ z P Q R ∣ d S \oint_LPdx+Qdy+Rdz=\iint_\Sigma\begin{vmatrix}dydz & dzdx & dxdy \\\frac\partial{\partial x} & \frac\partial{\partial y} & \frac\partial{\partial z} \\P & Q & R \\\end{vmatrix} dS=\iint_\Sigma\begin{vmatrix}cos\alpha & cos\beta & cos\gamma \\\frac\partial{\partial x} & \frac\partial{\partial y} & \frac\partial{\partial z} \\P & Q & R \\\end{vmatrix}dS LPdx+Qdy+Rdz=ΣdydzxPdzdxyQdxdyzRdS=ΣcosαxPcosβyQcosγzRdS
高斯公式 ∯ Σ P d y d z + Q d x d z + R d x d y = ∭ Ω ( ∂ P ∂ x + ∂ Q ∂ y + ∂ R ∂ z ) d v \oiint_\Sigma Pdydz+Qdxdz+Rdxdy=\iiint_\Omega(\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}+\frac{\partial R}{\partial z})dv ΣPdydz+Qdxdz+Rdxdy=Ω(xP+yQ+zR)dv

三、重要的例子

(一)挖点凑格林公式

本质上是复连通区域的格林公式
L L L 为曲线 x 2 3 + y 2 3 = a 2 3 ,   ( a > 0 ) x^{\frac23}+y^{\frac23}=a^{\frac23},\ (a>0) x32+y32=a32, (a>0) ∮ L y d x − x d y 2 x 2 + y 2 \oint_L \frac{ydx-xdy}{2x^2+y^2} L2x2+y2ydxxdy 且取逆时针方向。

  • 设曲线扣点

因为分母为 2 x 2 + y 2 2x^2+y^2 2x2+y2 所以在 ( 0 , 0 ) (0,0) (0,0) 点处分母为 0 ,不满足格林公式的应用条件。于是做一个 足够小的封闭曲线 ( 0 , 0 ) (0,0) (0,0) 点围住扣出去。考虑分母是 2 x 2 + y 2 2x^2+y^2 2x2+y2 ,为了便于计算(消掉分母)

所以设 L 1 L_1 L1 2 x 2 + y 2 = ε 2 , ( ε 是 充 分 小 的 正 数 ) 2x^2+y^2=\varepsilon^2,(\varepsilon是充分小的正数) 2x2+y2=ε2(ε) ,取顺时针方向

关于为什么取顺时针方向方向 ,格林公式 -> 环量=旋度之和

  • 构造参数方程

参照极坐标的方式构造参数方程
{ x = ε 2 c o s θ y = ϵ s i n θ \begin{cases} x=\frac{\varepsilon}{\sqrt2}cos\theta \\ y=\epsilon sin\theta \end{cases} {x=2 εcosθy=ϵsinθ

  • 代入原式

原 式 = ∮ L + L 1 − ∮ L 1 = 0 − ∫ L 1 原式=\oint_{L+L_1}-\oint_{L_1}=0-\int_{L_1} =L+L1L1=0L1
这里可以证明被积函数是保守场,所以积分的起点与终点在同一点时,积分值一定为 0 ,此处可以用格林公式证明
所以
原 式 = − ∫ 0 2 π ε 2 2 ( c o s 2 θ + s i n 2 θ ) ε 2 d θ = − 2 π 原式=-\int_0^{2\pi}\frac{\frac{\varepsilon^2}{\sqrt2}(cos^2\theta+sin^2\theta)}{\varepsilon^2}d\theta=-\sqrt2\pi =02πε22 ε2(cos2θ+sin2θ)dθ=2 π

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值