8 - 三重积分、曲线、曲面积分
一、基本框架
主要的内容为 一般的三重积分、第一型曲线/曲面积分、第二型曲线/曲面积分
曲线、曲面积分表示积分区域是曲线、曲面
(一)三重积分
1)基本性质(7个)
- 可积函数必有界
- 线性性 / 可加性
- 保号性
- 估值定理
- 中值定理
- 一般对称性
- 轮换对称性
2)三种基本坐标系
1. 直角坐标系
2. 柱面坐标系
{ x = r c o s θ y = r s i n θ z = z ∭ Ω f ( x , y , z ) d x d y d z = ∭ Ω f ( r c o s θ , r s i n θ , z ) r d r d θ d z \begin{aligned} &\begin{cases} x=rcos\theta \\ y=rsin\theta \\ z=z \\ \end{cases} \\ \iiint_\Omega f(x,y,z)\ dxdydz&=\iiint_\Omega f(rcos\theta,rsin\theta,z)\ rdrd\theta dz \end{aligned} ∭Ωf(x,y,z) dxdydz⎩⎪⎨⎪⎧x=rcosθy=rsinθz=z=∭Ωf(rcosθ,rsinθ,z) rdrdθdz
3. 球坐标系
{ x = r c o s θ s i n φ y = r s i n θ s i n φ z = r c o s φ ∭ Ω f ( x , y , z ) d x d y d z = ∭ Ω f ( r c o s θ s i n φ , r s i n θ s i n φ , r c o s φ ) r 2 s i n φ d r d θ d z \begin{aligned} &\begin{cases} x=rcos\theta sin\varphi \\ y=rsin\theta sin\varphi \\ z=rcos\varphi \\ \end{cases} \\ \iiint_\Omega f(x,y,z)\ dxdydz&=\iiint_\Omega f(rcos\theta sin\varphi,rsin\theta sin\varphi,rcos\varphi)\ r^2sin\varphi \ drd\theta dz \end{aligned} ∭Ωf(x,y,z) dxdydz⎩⎪⎨⎪⎧x=rcosθsinφy=rsinθsinφz=rcosφ=∭Ωf(rcosθsinφ,rsinθsinφ,rcosφ) r2sinφ drdθdz
3)基本处理方式
注意角度定限的时候需要 数形结合 的去分析函数
1. “先一后二”
例如,先对 z z z 积分,再对 X O Y XOY XOY 面上积分;相当于把 z z z 方向上的积分值转化成了 X O Y XOY XOY 面上的 面密度
一般当积分区域是个 柱形空间 的时候便于计算
2. “先二后一”
例如,先对 X O Y XOY XOY 面积分,再对 z z z 积分;相当于把与 X O Y XOY XOY 平行的平面积分值转化为了 z z z 的 线密度
一般当积分区域是个 旋转曲面 的时候便于计算
3. 逆用形心公式
相应的有 线、面、体 积分;有
x
‾
、
y
‾
、
z
‾
\overline x、\overline y、\overline z
x、y、z
x
‾
=
∭
Ω
x
d
v
∭
Ω
d
v
⇒
∭
Ω
x
d
v
=
x
‾
⋅
V
(
V
为
Ω
的
体
积
)
x
‾
=
∬
Σ
x
d
S
∬
Σ
d
S
⇒
∬
Σ
x
d
S
=
x
‾
⋅
S
(
S
为
Σ
的
面
积
)
x
‾
=
∫
Γ
x
d
s
∫
Γ
d
s
⇒
∫
Γ
x
d
S
=
x
‾
⋅
l
Γ
(
l
Γ
为
Γ
的
长
度
)
\begin{aligned} \overline x =\frac{\iiint_\Omega xdv}{\iiint_\Omega dv} &\Rightarrow \iiint_\Omega xdv=\overline x \cdot V\qquad(V\ 为 \ \Omega的体积) \\ \overline x =\frac{\iint_\Sigma xdS}{\iint_\Sigma dS} &\Rightarrow \iint_\Sigma xdS=\overline x \cdot S\qquad(S\ 为 \ \Sigma的面积) \\ \overline x =\frac{\int_\Gamma xds}{\int_\Gamma ds} &\Rightarrow \int_\Gamma xdS=\overline x \cdot l_\Gamma\qquad(l_\Gamma\ 为 \ \Gamma的长度) \end{aligned}
x=∭Ωdv∭Ωxdvx=∬ΣdS∬ΣxdSx=∫Γds∫Γxds⇒∭Ωxdv=x⋅V(V 为 Ω的体积)⇒∬ΣxdS=x⋅S(S 为 Σ的面积)⇒∫ΓxdS=x⋅lΓ(lΓ 为 Γ的长度)
4. 换元法
类似于代入参数方程
(二)第一型 曲线、曲面 积分 的一般处理方法
第一型曲线、曲面积分指被积函数是 标量场
其基本性质 同一般的积分 / 三重积分
1)曲线积分化为定积分(代入参数方程)
1. 参数方程描述曲线
d s = [ x ′ ( t ) ] 2 + [ y ′ ( t ) ] 2 + [ z ′ ( t ) ] 2 d t ds=\sqrt{[x^\prime(t)]^2+[y^\prime(t)]^2+[z^\prime(t)]^2}dt ds=[x′(t)]2+[y′(t)]2+[z′(t)]2dt
既然有参数方程,就存在 转化为参数方程 和 构造出参数方程
2. 极坐标方程描述曲线
d s = [ r ( θ ) ] 2 + [ r ′ ( θ ) ] 2 d t ds=\sqrt{[r(\theta)]^2+[r^\prime(\theta)]^2}dt ds=[r(θ)]2+[r′(θ)]2dt
令 x = c o s θ , y = s i n θ x=cos\theta,\ y=sin\theta x=cosθ, y=sinθ ,按照 ① 的方式代入,正好得到的就是极坐标的微元
2)曲面积分化为二重积分(投影法)
-
将 Σ \Sigma Σ 投影到某一平面 D D D
-
将 z = f ( x , y ) z=f(x,y) z=f(x,y) 或 F ( x , y , z ) = 0 F(x,y,z)=0 F(x,y,z)=0 代入被积函数
-
把曲面积分化为二重积分
∬ Σ f ( x , y , z ) d S = ∬ D f ( x , y , z ( x , y ) ) 1 + ( z x ′ ) 2 + ( z y ′ ) 2 d x d y \iint_\Sigma f(x,y,z)dS=\iint_D f(x,y,z(x,y))\sqrt{1+(z^\prime_x)^2+(z^\prime_y)^2}dxdy ∬Σf(x,y,z)dS=∬Df(x,y,z(x,y))1+(zx′)2+(zy′)2dxdy
空间曲面下的二重积分难以计算 / 定限,而投影之后可以把积分区域化为平面,于是能够 定限 / 计算 了注意: 投影点不能重合,否则需要分段处理
3)边界方程代入被积函数
即积分区域是 用等式描述 的,就可以直接代入等式简化积分运算,例如下面的描述方式都可以直接带入:
- 空间曲线方程
{ x = φ ( t ) y = ψ ( t ) z = ω ( t ) \begin{cases} x=\varphi(t) \\ y=\psi(t) \\ z=\omega(t) \end{cases} ⎩⎪⎨⎪⎧x=φ(t)y=ψ(t)z=ω(t) - 空间曲面方程
F ( x , y , z ) = 0 F(x,y,z)=0 F(x,y,z)=0
但是有些积分区域不是用等式描述的,所以不能带入,例如 - 不等式描述
D = { ( x , y ) ∣ 2 x 2 + y 2 ≤ a 2 } D=\{(x,y) |2x^2+y^2\leq a^2\} D={(x,y)∣2x2+y2≤a2}
不过这个可以用变形的极坐标处理 - 上下限描述
如积分区域由 y = − x 2 + 1 y=-x^2+1 y=−x2+1 和 y = 0 y=0 y=0 围成
这个可以代入积分限直接求积分
4)利用对称性和轮换对称性
5)形心公式逆用
6)常见物理应用
1. 找重心 / 形心
参照形心公式
2. 求转动惯量
转动惯量核心公式 I = m r 2 I=mr^2 I=mr2
3. 求引力
引力核心公式 F = G M m r 2 F = \frac{GMm}{r^2} F=r2GMm
(三)第二型 曲线、曲面 积分的一般处理办法
第二型曲线、曲面积分指被积函数是 矢量场
第二型积分的形式,如:
∫
Γ
F
⃗
(
x
,
y
,
z
)
⋅
d
r
⃗
=
∫
Γ
P
(
x
,
y
,
z
)
d
x
+
Q
(
x
,
y
,
z
)
d
y
+
R
(
x
,
y
,
z
)
d
z
\int_\Gamma\vec F(x,y,z)\cdot d\vec r=\int_\Gamma P(x,y,z)dx+Q(x,y,z)dy+R(x,y,z)dz
∫ΓF(x,y,z)⋅dr=∫ΓP(x,y,z)dx+Q(x,y,z)dy+R(x,y,z)dz
【注】 :不满足格林、高斯、斯托克斯公式条件时,可以割补区间使之满足条件
1)基本性质 (三个)
- 线性性
- 可加性
- 有向性
2)曲线积分处理方法
1. 化为定积分(代入参数方程)
曲线由 参数方程 给出时(设参数
t
:
α
→
β
t:\alpha \rightarrow \beta
t:α→β )
本质上是 变量代换 ,如
d
x
→
d
x
(
t
)
→
x
′
(
t
)
d
t
dx \rightarrow dx(t) \rightarrow x^\prime(t)dt
dx→dx(t)→x′(t)dt
∫
Γ
P
(
x
,
y
)
d
x
+
Q
(
x
,
y
)
d
y
=
∫
α
β
P
[
x
(
t
)
,
y
(
t
)
]
x
′
(
t
)
+
Q
[
x
(
t
)
,
y
(
t
)
]
y
′
(
t
)
d
t
\int_\Gamma P(x,y)dx+Q(x,y)dy=\int_\alpha^\beta{P[x(t),y(t)]x^\prime(t)+Q[x(t),y(t)]y^\prime(t)}\ dt
∫ΓP(x,y)dx+Q(x,y)dy=∫αβP[x(t),y(t)]x′(t)+Q[x(t),y(t)]y′(t) dt
2. 格林公式(封闭平面曲线-平面)
∮ L P ( x , y ) d x + Q ( x , y ) d y = ∬ D ( ∂ Q ∂ x − ∂ P ∂ y ) d σ \oint_LP(x,y)dx+Q(x,y)dy=\iint_D(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y})d\sigma ∮LP(x,y)dx+Q(x,y)dy=∬D(∂x∂Q−∂y∂P)dσ
【注】 :不满足格林、高斯、斯托克斯公式条件时,可以割补区间使之满足条件
3. 斯托克斯公式(封闭空间曲线-曲面)
【注】 :不满足格林、高斯、斯托克斯公式条件时,可以割补区间使之满足条件
∮ L P d x + Q d y + R d z = ∬ Σ ∣ d y d z d z d x d x d y ∂ ∂ x ∂ ∂ y ∂ ∂ z P Q R ∣ d S = ∬ Σ ∣ c o s α c o s β c o s γ ∂ ∂ x ∂ ∂ y ∂ ∂ z P Q R ∣ d S \oint_LPdx+Qdy+Rdz=\iint_\Sigma \begin{vmatrix} dydz & dzdx & dxdy \\ \frac\partial{\partial x} & \frac\partial{\partial y} & \frac\partial{\partial z} \\ P & Q & R \\ \end{vmatrix} dS= \iint_\Sigma \begin{vmatrix} cos\alpha & cos\beta & cos\gamma \\ \frac\partial{\partial x} & \frac\partial{\partial y} & \frac\partial{\partial z} \\ P & Q & R \\ \end{vmatrix} dS ∮LPdx+Qdy+Rdz=∬Σ∣∣∣∣∣∣dydz∂x∂Pdzdx∂y∂Qdxdy∂z∂R∣∣∣∣∣∣dS=∬Σ∣∣∣∣∣∣cosα∂x∂Pcosβ∂y∂Qcosγ∂z∂R∣∣∣∣∣∣dS
其中
Σ
\Sigma
Σ 为光滑有向曲面片,
L
L
L 为逐段光滑的
Σ
\Sigma
Σ 的边界,他的方向与
Σ
\Sigma
Σ 的法向量成右手系,
P
、
Q
、
R
P、Q、R
P、Q、R 有连续一阶偏导数
(
c
o
s
α
,
c
o
s
β
,
c
o
s
γ
)
(cos\alpha,cos\beta,cos\gamma)
(cosα,cosβ,cosγ) 为曲面
Σ
\Sigma
Σ 的单位法向量
3)曲面积分处理方法
1. 化为二重积分(投影法)
以投影到 XOY 面为例
-
将 Σ \Sigma Σ 投影到某一平面 D D D
-
将 z = f ( x , y ) z=f(x,y) z=f(x,y) 或 F ( x , y , z ) = 0 F(x,y,z)=0 F(x,y,z)=0 代入被积函数
-
将 d x d y dxdy dxdy 改写成 ± d x d y \pm dxdy ±dxdy , Σ \Sigma Σ 方向向上(法向量与 Z 轴夹角为锐角)时取 + + + ,否则取 − - − ,于是得到
∬ Σ f ( x , y , z ) d x d y = ± ∬ D f ( x , y , z ( x , y ) ) d x d y \iint_\Sigma f(x,y,z)dxdy=\pm\iint_Df(x,y,z(x,y))dxdy ∬Σf(x,y,z)dxdy=±∬Df(x,y,z(x,y))dxdy
空间曲面下的二重积分难以计算 / 定限,而投影之后可以把积分区域化为平面,于是能够 定限 / 计算 了
注意: 投影点不能重合,否则需要分段处理
2. 高斯公式(空间封闭曲面-体)
∯ Σ P d y d z + Q d x d z + R d x d y = ∭ Ω ( ∂ P ∂ x + ∂ Q ∂ y + ∂ R ∂ z ) d v \oiint_\Sigma Pdydz+Qdxdz+Rdxdy=\iiint_\Omega(\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}+\frac{\partial R}{\partial z})dv ∬ΣPdydz+Qdxdz+Rdxdy=∭Ω(∂x∂P+∂y∂Q+∂z∂R)dv
Σ \Sigma Σ 是 Ω \Omega Ω 的整个边界曲面的 外侧
【注】 :不满足格林、高斯、斯托克斯公式条件时,可以割补区间使之满足条件
4)利用保守场性质
当被积函数是个保守场的时候,积分值 与积分路径无关 ,于是可以自己构建便于计算的积分路径
但是注意不要经过无定义点,如被积函数是
1
x
2
+
y
2
\frac1{x^2+y^2}
x2+y21 时的
(
0
,
0
)
(0,0)
(0,0) 点
1. 保守场的判断条件
-
判断向量场 F ⃗ = ( P ( x , y ) , Q ( x , y ) ) \vec F=(P(x,y),\ Q(x,y)) F=(P(x,y), Q(x,y)) 为保守场的条件:
∂ Q ∂ x = ∂ P ∂ y ⟺ ∣ ∂ ∂ x ∂ ∂ y P Q ∣ = 0 \frac{\partial Q}{\partial x}=\frac{\partial P}{\partial y} \Longleftrightarrow \begin{vmatrix} \frac{\partial }{\partial x} & \frac{\partial}{\partial y} \\ P & Q \end{vmatrix} =0 ∂x∂Q=∂y∂P⟺∣∣∣∣∂x∂P∂y∂Q∣∣∣∣=0 -
判断向量场 F ⃗ ( P ( x , y , z ) , Q ( x , y , z ) , R ( x , y , z ) ) \vec F(P(x,y,z),\ Q(x,y,z),\ R(x,y,z)) F(P(x,y,z), Q(x,y,z), R(x,y,z)) 为保守场的条件:
∂ P ∂ y = ∂ Q ∂ x , ∂ P ∂ z = ∂ R ∂ x , ∂ Q ∂ z = ∂ R ∂ y ⟺ ∣ x ^ y ^ z ^ ∂ ∂ x ∂ ∂ y ∂ ∂ z P Q R ∣ = 0 \frac{\partial P}{\partial y}=\frac{\partial Q}{\partial x},\frac{\partial P}{\partial z}=\frac{\partial R}{\partial x},\frac{\partial Q}{\partial z}=\frac{\partial R}{\partial y} \\ \Longleftrightarrow \\ \begin{vmatrix} \hat x & \hat y & \hat z \\ \frac{\partial }{\partial x} & \frac{\partial }{\partial y} & \frac{\partial }{\partial z} \\ P & Q & R \\ \end{vmatrix} = 0 ∂y∂P=∂x∂Q,∂z∂P=∂x∂R,∂z∂Q=∂y∂R⟺∣∣∣∣∣∣x^∂x∂Py^∂y∂Qz^∂z∂R∣∣∣∣∣∣=0
【注意】 诸如被积函数含有 1 x 2 + y 2 \frac{1}{x^2+y^2} x2+y21 时,积分区域不含有 ( 0 , 0 ) (0,0) (0,0) 点,所以自行选择积分路径时,需要绕开 ( 0 , 0 ) (0,0) (0,0) 点
二、表格化总结
(一)符号说明
符号 | 含义 | 符号 | 含义 |
---|---|---|---|
/ | / | L L L | 直线 |
d s ds ds | 曲线的弧长微元 | Γ \Gamma Γ | 曲线 |
d σ d\sigma dσ | 平面的面积微元 | D D D | 平面 |
d S dS dS | 曲面的面积微元 | Σ \Sigma Σ | 曲面 |
d v dv dv | 物体的体积微元 | Ω \Omega Ω | 空间区域 |
(二)方程变换
积分类型 | 方程变换 |
---|---|
第一型 曲线 积分 | d s = [ x ′ ( t ) ] 2 + [ y ′ ( t ) ] 2 + [ z ′ ( t ) ] 2 d t ds=\sqrt{[x^\prime(t)]^2+[y^\prime(t)]^2+[z^\prime(t)]^2}dt ds=[x′(t)]2+[y′(t)]2+[z′(t)]2dt d s = [ r ( θ ) ] 2 + [ r ′ ( θ ) ] 2 d t ds=\sqrt{[r(\theta)]^2+[r^\prime(\theta)]^2}dt ds=[r(θ)]2+[r′(θ)]2dt |
第一型 曲面 积分 | ∬ Σ f ( x , y , z ) d S = ∬ D f ( x , y , z ( x , y ) ) 1 + ( z x ′ ) 2 + ( z y ′ ) 2 d x d y \iint_\Sigma f(x,y,z)dS=\iint_D f(x,y,z(x,y))\sqrt{1+(z^\prime_x)^2+(z^\prime_y)^2}dxdy ∬Σf(x,y,z)dS=∬Df(x,y,z(x,y))1+(zx′)2+(zy′)2dxdy (以投影到 XOY 为例) |
第二型 曲线 积分 | ∫ Γ P ( x , y ) d x + Q ( x , y ) d y = ∫ α β P [ x ( t ) , y ( t ) ] x ′ ( t ) + Q [ x ( t ) , y ( t ) ] y ′ ( t ) d t \int_\Gamma P(x,y)dx+Q(x,y)dy=\int_\alpha^\beta{P[x(t),y(t)]x^\prime(t)+Q[x(t),y(t)]y^\prime(t)}\ dt ∫ΓP(x,y)dx+Q(x,y)dy=∫αβP[x(t),y(t)]x′(t)+Q[x(t),y(t)]y′(t) dt |
第二型 曲面 积分 | ∬ Σ f ( x , y , z ) d x d y = ± ∬ D f ( x , y , z ( x , y ) ) d x d y \iint_\Sigma f(x,y,z)dxdy=\pm\iint_Df(x,y,z(x,y))dxdy ∬Σf(x,y,z)dxdy=±∬Df(x,y,z(x,y))dxdy (以投影到 XOY 为例) |
(三)格林、高斯、斯托克斯公式
名称 | 公式 |
---|---|
格林公式 | ∮ L P ( x , y ) d x + Q ( x , y ) d y = ∬ D ( ∂ Q ∂ x − ∂ P ∂ y ) d σ \oint_LP(x,y)dx+Q(x,y)dy=\iint_D(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y})d\sigma ∮LP(x,y)dx+Q(x,y)dy=∬D(∂x∂Q−∂y∂P)dσ |
斯托克斯公式 | ∮ L P d x + Q d y + R d z = ∬ Σ ∣ d y d z d z d x d x d y ∂ ∂ x ∂ ∂ y ∂ ∂ z P Q R ∣ d S = ∬ Σ ∣ c o s α c o s β c o s γ ∂ ∂ x ∂ ∂ y ∂ ∂ z P Q R ∣ d S \oint_LPdx+Qdy+Rdz=\iint_\Sigma\begin{vmatrix}dydz & dzdx & dxdy \\\frac\partial{\partial x} & \frac\partial{\partial y} & \frac\partial{\partial z} \\P & Q & R \\\end{vmatrix} dS=\iint_\Sigma\begin{vmatrix}cos\alpha & cos\beta & cos\gamma \\\frac\partial{\partial x} & \frac\partial{\partial y} & \frac\partial{\partial z} \\P & Q & R \\\end{vmatrix}dS ∮LPdx+Qdy+Rdz=∬Σ∣∣∣∣∣∣dydz∂x∂Pdzdx∂y∂Qdxdy∂z∂R∣∣∣∣∣∣dS=∬Σ∣∣∣∣∣∣cosα∂x∂Pcosβ∂y∂Qcosγ∂z∂R∣∣∣∣∣∣dS |
高斯公式 | ∯ Σ P d y d z + Q d x d z + R d x d y = ∭ Ω ( ∂ P ∂ x + ∂ Q ∂ y + ∂ R ∂ z ) d v \oiint_\Sigma Pdydz+Qdxdz+Rdxdy=\iiint_\Omega(\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}+\frac{\partial R}{\partial z})dv ∬ΣPdydz+Qdxdz+Rdxdy=∭Ω(∂x∂P+∂y∂Q+∂z∂R)dv |
三、重要的例子
(一)挖点凑格林公式
本质上是复连通区域的格林公式
L
L
L 为曲线
x
2
3
+
y
2
3
=
a
2
3
,
(
a
>
0
)
x^{\frac23}+y^{\frac23}=a^{\frac23},\ (a>0)
x32+y32=a32, (a>0) 求
∮
L
y
d
x
−
x
d
y
2
x
2
+
y
2
\oint_L \frac{ydx-xdy}{2x^2+y^2}
∮L2x2+y2ydx−xdy 且取逆时针方向。
- 设曲线扣点
因为分母为 2 x 2 + y 2 2x^2+y^2 2x2+y2 所以在 ( 0 , 0 ) (0,0) (0,0) 点处分母为 0 ,不满足格林公式的应用条件。于是做一个 足够小的封闭曲线 把 ( 0 , 0 ) (0,0) (0,0) 点围住扣出去。考虑分母是 2 x 2 + y 2 2x^2+y^2 2x2+y2 ,为了便于计算(消掉分母)
所以设 L 1 L_1 L1 为 2 x 2 + y 2 = ε 2 , ( ε 是 充 分 小 的 正 数 ) 2x^2+y^2=\varepsilon^2,(\varepsilon是充分小的正数) 2x2+y2=ε2,(ε是充分小的正数) ,取顺时针方向
关于为什么取顺时针方向方向 ,格林公式 -> 环量=旋度之和
- 构造参数方程
参照极坐标的方式构造参数方程
{
x
=
ε
2
c
o
s
θ
y
=
ϵ
s
i
n
θ
\begin{cases} x=\frac{\varepsilon}{\sqrt2}cos\theta \\ y=\epsilon sin\theta \end{cases}
{x=2εcosθy=ϵsinθ
- 代入原式
原
式
=
∮
L
+
L
1
−
∮
L
1
=
0
−
∫
L
1
原式=\oint_{L+L_1}-\oint_{L_1}=0-\int_{L_1}
原式=∮L+L1−∮L1=0−∫L1
这里可以证明被积函数是保守场,所以积分的起点与终点在同一点时,积分值一定为 0 ,此处可以用格林公式证明
所以
原
式
=
−
∫
0
2
π
ε
2
2
(
c
o
s
2
θ
+
s
i
n
2
θ
)
ε
2
d
θ
=
−
2
π
原式=-\int_0^{2\pi}\frac{\frac{\varepsilon^2}{\sqrt2}(cos^2\theta+sin^2\theta)}{\varepsilon^2}d\theta=-\sqrt2\pi
原式=−∫02πε22ε2(cos2θ+sin2θ)dθ=−2π