数学分析(二十一)-重积分5-三重积分1:三重积分的概念【J=∭ᵥf(x,y,z)dV=∭ᵥf(x,y,z)dxdydz】【求一个空间立体V的质量M】【f(x,y,z)为密度函数】

本文介绍了如何利用三重积分求解一个空间立体的质量。通过将立体分割成小块并应用密度函数,可以计算每个小块的质量,进而求得整体质量。三重积分在有界闭区域上对连续函数是可积的,其积分结果表示立体的体积。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

类似于第一型曲线积分, 求一个空间立体 V V V 的质量 M M M 就可导出三重积分. 设密度函数为 f ( x , y , z ) f(x, y, z) f(x,y,z), 为了求 V V V 的质量, 我们把 V V V 分割成 n n n个小块 V 1 , V 2 , ⋯   , V n V_{1}, V_{2}, \cdots, V_{n} V1,V2,,Vn, 在每个小块 V i V_{i} Vi 上任取一点 ( ξ i , η i , ζ i ) \left(\xi_{i}, \eta_{i}, \zeta_{i}\right) (ξi,ηi,ζi), 则

M = lim ⁡ ∥ T ∥ → 0 ∑ i = 1 n f ( ξ i , η i , ζ i ) Δ V i , M=\lim \limits_{\|T\| \rightarrow 0} \sum_{i=1}^{n} f\left(\xi_{i}, \eta_{i}, \zeta_{i}\right) \Delta V_{i}, M=T0limi=1nf(ξi,η

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值