类似于第一型曲线积分, 求一个空间立体 V V V 的质量 M M M 就可导出三重积分. 设密度函数为 f ( x , y , z ) f(x, y, z) f(x,y,z), 为了求 V V V 的质量, 我们把 V V V 分割成 n n n个小块 V 1 , V 2 , ⋯ , V n V_{1}, V_{2}, \cdots, V_{n} V1,V2,⋯,Vn, 在每个小块 V i V_{i} Vi 上任取一点 ( ξ i , η i , ζ i ) \left(\xi_{i}, \eta_{i}, \zeta_{i}\right) (ξi,ηi,ζi), 则
M = lim ∥ T ∥ → 0 ∑ i = 1 n f ( ξ i , η i , ζ i ) Δ V i , M=\lim \limits_{\|T\| \rightarrow 0} \sum_{i=1}^{n} f\left(\xi_{i}, \eta_{i}, \zeta_{i}\right) \Delta V_{i}, M=∥T∥→0limi=1∑nf(ξi,η