1 - 行列式 - 矩阵 的运算

1 - 行列式 - 矩阵 的运算

(一)转置、求逆、伴随矩阵

1)基本运算

转置(T)求逆(-1)伴随矩阵(*)
( A T ) T = A (A^T)^T=A (AT)T=A ( A − 1 ) − 1 = A (A^{-1})^{-1}=A (A1)1=A ( A ∗ ) ∗ = ∣ A ∣ n − 2 A (A^*)^*=\lvert A\rvert^{n-2}A (A)=An2A (可推导)
( k A ) T = k A T (kA)^T=kA^T (kA)T=kAT ( k A ) − 1 = k − 1 A − 1 (kA)^{-1}=k^{-1}A^{-1} (kA)1=k1A1 ( k A ) ∗ = k n − 1 ∣ A ∣ A − 1 (kA)^*=k^{n-1}\lvert A\rvert A^{-1} (kA)=kn1AA1 (可推导)
( A B ) T = B T A T (AB)^T=B^TA^T (AB)T=BTAT ( A B ) − 1 = B − 1 A − 1 (AB)^{-1}=B^{-1}A^{-1} (AB)1=B1A1 ( A B ) ∗ = B ∗ A ∗ (AB)^*=B^*A^* (AB)=BA
∣ A T ∣ = ∣ A ∣ \lvert A^T\rvert = \lvert A\rvert AT=A ∣ A − 1 ∣ = ∣ A ∣ − 1 \lvert A^{-1}\rvert = \lvert A\rvert ^{-1} A1=A1 ∣ A ∗ ∣ = ∣ A ∣ n − 1 \lvert A^*\rvert = \lvert A\rvert^{n-1} A=An1 (可推导)
( A + B ) T = A T + B T (A+B)^T=A^T+B^T (A+B)T=AT+BT//

( A ∗ ) ∗ = ∣ A ∣ n − 2 A (A^*)^*=\lvert A\rvert^{n-2}A (A)=An2A 直接用关键公式 推导
( A ∗ ) ∗ = ( ∣ A ∣ A − 1 ) ∗ = ∣ ∣ A ∣ A − 1 ∣ ⋅ ( ∣ A ∣ A − 1 ) − 1 = ∣ A ∣ n ⋅ ∣ A − 1 ∣ ⋅ 1 ∣ A ∣ A = ∣ A ∣ n − 2 A (A^*)^*=(\lvert A\rvert A^{-1})^*=\lvert \lvert A\rvert A^{-1}\rvert \cdot (\lvert A\rvert A^{-1})^{-1}=\lvert A \rvert ^{n} \cdot \lvert A^{-1} \rvert \cdot \frac{1}{\lvert A\rvert} A=\lvert A\rvert^{n-2}A (A)=(AA1)=AA1(AA1)1=AnA1A1A=An2A

( k A ) ∗ = k n − 1 ∣ A ∣ A − 1 (kA)^*=k^{n-1}\lvert A\rvert A^{-1} (kA)=kn1AA1 直接用关键公式 推导
( k A ) ∗ = ∣ k A ∣ ⋅ ( k A ) − 1 = k n ∣ A ∣ k − 1 A − 1 = k n − 1 ∣ A ∣ A − 1 (kA)^*= \lvert kA \rvert \cdot (kA)^{-1} = k^n \lvert A \rvert k^{-1}A^{-1} = k^{n-1}\lvert A\rvert A^{-1} (kA)=kA(kA)1=knAk1A1=kn1AA1

伴随矩阵:
A ∗ = [ A 11 A 21 ⋯ A n 1 A 12 A 22 ⋯ A n 2 ⋮ ⋮ ⋮ A 1 n A 2 n ⋯ A n n ] A^*= \begin{bmatrix} A_{11} & A_{21} & \cdots & A_{n1} & \\ A_{12} & A_{22} & \cdots & A_{n2} & \\ \vdots & \vdots & & \vdots & \\ A_{1n} & A_{2n} & \cdots & A_{nn} \end{bmatrix} A=A11A12A1nA21A22A2nAn1An2Ann
其下表的排列顺序跟正常的矩阵是 转置 了的

由其特殊的排列方式,故可能构建与 转置矩阵 有关的方程

2)关键公式

A ∗ = ∣ A ∣ A − 1 A^*=\lvert A\rvert A^{-1} A=AA1 (注意要求 A A A 可逆)

A = ∣ A ∣   ( A ∗ ) − 1 A=\lvert A \rvert \ (A^*)^{-1} A=A (A)1 (两边同取 -1 次方)

A A ∗ = ∣ A ∣ E AA^*=|A|E AA=AE (两边同乘 A)

∣ A B ∣ = ∣ A ∣ ⋅ ∣ B ∣ \lvert AB \rvert=\lvert A \rvert \cdot \lvert B \rvert AB=AB

∣ k A ∣ = k n ∣ A ∣ \lvert kA \rvert = k^n \lvert A \rvert kA=knA

3)可逆、正交、对称矩阵的判断

名称判别方式
可逆矩阵 ∣ A ∣ ≠ 0 \vert A \rvert \neq 0 A=0 r ( A n × n ) = n r(A_{n\times n})=n r(An×n)=n 或 定义
正交矩阵 A A T = E   或   A T A = E AA^T=E \ 或\ A^TA=E AAT=E  ATA=E (即 A T = A − 1 A^T=A^{-1} AT=A1
对称矩阵 A T = A A^T=A AT=A
反对称矩阵 A T = − A A^T=-A AT=A

【注】 矩阵乘法不满足 交换律 ,所以区分 A A T AA^T AAT A T A A^TA ATA
【注】 A T A = O   o r   A A T = O ⇒ A = O A^TA=O\ or\ AA^T=O \Rightarrow A=O ATA=O or AAT=OA=O

4)分块矩阵逆矩阵

[ A O O B ] − 1 = [ A − 1 O O B − 1 ] ,   [ O A B O ] = [ O B − 1 A − 1 O ] \begin{bmatrix} A & O \\ O & B \\ \end{bmatrix}^{-1}= \begin{bmatrix} A^{-1} & O \\ O & B^{-1} \\ \end{bmatrix},\ \begin{bmatrix} O & A \\ B & O \\ \end{bmatrix}= \begin{bmatrix} O & B^{-1} \\ A^{-1} & O \\ \end{bmatrix} [AOOB]1=[A1OOB1], [OBAO]=[OA1B1O]

5)矩阵乘法的“交换律”

矩阵乘法一般 不满足交换律
但是下列情况下有类似交换律的运算

A E = E A = A AE=EA=A AE=EA=A

A A n = A n A = A n + 1 AA^n=A^nA=A^{n+1} AAn=AnA=An+1

A A − 1 = A − 1 A = E AA^{-1}=A^{-1}A=E AA1=A1A=E

A A ∗ = A ∗ A = ∣ A ∣ E AA^*=A^*A=|A|E AA=AA=AE

(二)行列式的计算

1)分块矩阵行列式

∣ A O O B ∣ = ∣ A ∣ ⋅ ∣ B ∣ ,   ∣ O A B O ∣ = ( − 1 ) m n ∣ A ∣ ⋅ ∣ B ∣ \begin{vmatrix} A & O \\ O & B \\ \end{vmatrix} = \lvert A \rvert\cdot \lvert B \rvert, \ \begin{vmatrix} O & A \\ B & O \\ \end{vmatrix}=(-1)^{mn}\lvert A \rvert\cdot \lvert B \rvert AOOB=AB, OBAO=(1)mnAB

2)按某一 行/列 展开

∣ A ∣ = ∑ j = 1 n a i j A i j = ∑ i = 1 n a i j A i j \lvert A \rvert=\sum_{j=1}^{n} a_{ij}A_{ij}=\sum_{i=1}^{n} a_{ij}A_{ij} A=j=1naijAij=i=1naijAij

【注】 A i j = ( − 1 ) i + j M i j A_{ij}=(-1)^{i+j}M_{ij} Aij=(1)i+jMij A i j A_{ij} Aij 与展开的 行/列 的元素值无关

  • 可以反向应用公式 求行列式的值
  • 也可以正向运用公式 把求 A i j A_{ij} Aij 的线性加和的问题转化为求行列式的值的问题

3)副对角线行列式

∣ 0 ⋯ 0 a 1 n 0 ⋯ a 2 , n − 1 0 ⋮ ⋮ ⋮ a n 1 ⋯ 0 0 ∣ = ( − 1 ) n ( n − 1 ) 2 a 1 n a 2 , n − 1 ⋯ a n 1 \begin{vmatrix} 0 & \cdots & 0 & a_{1n} \\ 0 & \cdots & a_{2,n-1} & 0 \\ \vdots & & \vdots & \vdots \\ a_{n1} & \cdots & 0 & 0 \\ \end{vmatrix}= (-1)^{\frac{n(n-1)}{2}} a_{1n}a_{2,n-1}\cdots a_{n1} 00an10a2,n10a1n00=(1)2n(n1)a1na2,n1an1

4)范德蒙德行列式

∣ 1 1 ⋯ 1 x 1 x 2 ⋯ x n x 1 2 x 2 2 ⋯ x n 2 ⋮ ⋮ ⋮ x 1 n − 1 x 2 n − 1 ⋯ x n n − 1 ∣ = ∏ 1 ≤ i < j ≤ n ( x j − x i ) \begin{vmatrix} 1 & 1 & \cdots & 1 \\ x_1 & x_2 & \cdots & x_n \\ x_1^2 & x_2^2 & \cdots & x_n^2 \\ \vdots & \vdots & & \vdots \\ x_1^{n-1} & x_2^{n-1} & \cdots & x_n^{n-1} \\ \end{vmatrix}= \prod_{1\leq i<j\leq n}(x_j-x_i) 1x1x12x1n11x2x22x2n11xnxn2xnn1=1i<jn(xjxi)

int ans = 1;
for(j=1;j<=n;j++)
    for(i=1;i<j;i++)
        ans *= xj - xi;

5)利用特征值

∏ i = 1 n λ i = ∣ A ∣ \prod_{i=1}^{n} \lambda_i=\lvert A \rvert i=1nλi=A

  • ∣ λ E − A ∣ = 0 \lvert \lambda E - A \rvert = 0 λEA=0 ,解得的 λ \lambda λ 即为特征值
  • 矩阵的迹: t r ( A ) = ∑ i = 1 n λ i = ∑ i = 1 n a i i tr(A)=\sum_{i=1}^{n}\lambda_i=\sum_{i=1}^{n}a_{ii} tr(A)=i=1nλi=i=1naii
  • A − 1 A^{-1} A1 的特征值为 λ − 1 \lambda^{-1} λ1

常用关系
以下关系大部分可用 A ξ = λ ξ A\xi=\lambda\xi Aξ=λξ 推导得到

矩阵 A A A k 1 A + k 2 E k_1A+k_2E k1A+k2E A k A^k Ak A T A^T AT A − 1 A^{-1} A1 A ∗ A^* A f ( A ) f(A) f(A) P − 1 A P P^{-1}AP P1AP
特征值 λ \lambda λ k 1 λ + k 2 k_1\lambda+k_2 k1λ+k2 λ k \lambda^k λk λ \lambda λ λ − 1 \lambda^{-1} λ1 ∣ A ∣ λ \frac{\lvert A\rvert}{\lambda} λA f ( λ ) f(\lambda) f(λ) λ \lambda λ
特征向量 ξ \xi ξ ξ \xi ξ ξ \xi ξ需要重新计算 ξ \xi ξ ξ \xi ξ ξ \xi ξ P − 1 ξ P^{-1}\xi P1ξ

最后一个常用于相似,例如求矩阵A的特征向量时却只给出了如 f ( A ) = 0 f(A)=0 f(A)=0 的等式关系,可以根据A矩阵符合的等式关系,得到 A = P B P − 1 A=PBP^{-1} A=PBP1 ,此时B矩阵可以通过 f ( A ) = 0 f(A)=0 f(A)=0 明确出来,然后求出 B 矩阵的特征向量,再通过 P − 1 ξ P^{-1}\xi P1ξ 推出 A 矩阵的特征向量

特征值的其它性质

  • ξ 、 η \xi、\eta ξη 都是属于 λ \lambda λ 的特征向量,则 k 1 ξ + k 2 η ,   ( k 1 、 k 2 不 同 时 为 0 ) k_1\xi+k_2\eta ,\ (k_1、k_2 不同时为 0) k1ξ+k2η, (k1k20) 仍是属于 λ \lambda λ 的特征向量
  • 求相似矩阵的 P 矩阵时,可以用特征向量拼得 P 矩阵
  • 实对称矩阵,属于不同特征值的特征向量必正交(可以用来求特征向量)
  • λ n = t r ( A ) − ∑ λ i \lambda_n=tr(A)-\sum\lambda_i λn=tr(A)λi (求特征值得技巧)
  • A x = 0 ⇒ A x = 0 x Ax=0 \Rightarrow Ax=0x Ax=0Ax=0x 暗示了特征值为 0
  • n 阶矩阵隐含特征值不为 0

(三)行列式、矩阵 初等变换

1)注意事项

  • 矩阵的初等变换可能会改变行列式的值;但其行列式是否为 0 是不会变的(初等变换不改变矩阵的秩)
  • 矩阵的初等变换 可能会改变其 伴随矩阵

2)符号说明

  • E 2 ( k ) E_2(k) E2(k) :单位矩阵 E E E 的第2 行/列 乘 k 倍
  • E 12 E_{12} E12 :单位矩阵 E E E 的第1、2 行/列 互换
  • E 12 ( k ) E_{12}(k) E12(k) :单位矩阵 E E E第2行 的 k 倍加到 第1行 ;E矩阵的 第1列 的 k 倍加到 第2列

行是从右往左 “赋值” ;列相反

三种初等变换都分别有等价的变换形式,所以所有的行变换都可以有列变换的替代,反之亦然;
由此,对于满秩矩阵,可以只靠 初等行变换初等列变换 得到单位矩阵

注:

倍乘互换倍加
[ E i ( k ) ] − 1 = E i ( k − 1 ) [E_i(k)]^{-1}=E_i(k^{-1}) [Ei(k)]1=Ei(k1) E i j − 1 = E i j E_{ij}^{-1}=E_{ij} Eij1=Eij [ E i j ( k ) ] − 1 = E i j ( − k ) [E_{ij}(k)]^{-1}=E_{ij}(-k) [Eij(k)]1=Eij(k)
[ E i ( k ) ] ∗ = k E i ( k − 1 ) [E_{i}(k)]^*=kE_{i}(k^{-1}) [Ei(k)]=kEi(k1) E i j ∗ = − E i j E_{ij}^*=-E_{ij} Eij=Eij [ E i j ( k ) ] ∗ = E i j ( − k ) [E_{ij}(k)]^*=E_{ij}(-k) [Eij(k)]=Eij(k)

3)等价矩阵和等价标准型

等价具有 传递性

  • 矩阵 A m × n , B m × n A_{m\times n},B_{m\times n} Am×n,Bm×n ,若存在可逆矩阵 P m × m , Q n × n P_{m\times m},Q_{n\times n} Pm×m,Qn×n 使得 P A Q = B PAQ=B PAQ=B ,则称 A , B A,B A,B 是等价矩阵,记作 A ≅ B A \cong B AB

  • r ( A ) = r r(A)=r r(A)=r ,则下面的右侧矩阵是 A A A 的等价标准型;等价标准型唯一

P A Q = [ E r O O O ] PAQ= \begin{bmatrix} E_r & O \\ O & O \\ \end{bmatrix} PAQ=[ErOOO]

可以通过对 单位矩阵 E E E 的一系列 初等行变换 得到 P P P P A PA PA 是按照由 E E E P P P 的初等行变换步骤,对 A A A 做初等 变换

可以通过对 单位矩阵 E E E 的一系列 初等列变换 得到 Q Q Q A Q AQ AQ 是按照由 E E E Q Q Q 的初等列变换步骤,对 A A A 做初等 变换

“左行右列”

4)初等变换求逆矩阵

[ A ∣ E ] 初 等 行 变 换 → [ E ∣ A − 1 ] \begin{bmatrix} A|E \end{bmatrix} \underrightarrow{初等行变换} \begin{bmatrix} E|A^{-1} \end{bmatrix} [AE] [EA1]

[ A E ] 初 等 列 变 换 → [ E A − 1 ] \begin{bmatrix} A \\ E \\ \end{bmatrix} \underrightarrow{初等列变换} \begin{bmatrix} E \\ A^{-1} \\ \end{bmatrix} [AE] [EA1]

(四)矩阵的秩

1)初等变换不改变矩阵的秩

r ( A ) = r ( P A ) = r ( A Q ) = r ( P A Q ) r(A)=r(PA)=r(AQ)=r(PAQ) r(A)=r(PA)=r(AQ)=r(PAQ)

2)跟秩相关的几个式子

1. 由定义可得
  • 0 ≤ r ( A ) ≤ m i n { m , n } 0\leq r(A)\leq min\{m,n\} 0r(A)min{m,n}

  • r ( k A ) = r ( A ) ( k ≠ 0 ) r(kA)=r(A)(k\neq0) r(kA)=r(A)(k=0)

2. 其它
  • r ( A B ) ≤ m i n { r ( A ) , r ( B ) } r(AB)\leq min\{r(A),r(B)\} r(AB)min{r(A),r(B)}

  • 若 B 满秩,则 r ( A B ) = r ( A ) r(AB)=r(A) r(AB)=r(A)

  • r ( A + B ) ≤ r ( A ) + r ( B ) r(A+B)\leq r(A)+r(B) r(A+B)r(A)+r(B)

  • A B = O ⇒ r ( A ) + r ( B ) ≤ n AB=O \Rightarrow r(A) + r(B) \leq n AB=Or(A)+r(B)n

  • r ( A ∗ ) = { n , r ( A ) = n 1 , r ( A ) = n − 1 0 , r ( A ) < n − 1 ( 此 处 为   A n × n ) r(A^*)= \begin{cases} n, \qquad r(A)=n \\ 1, \qquad r(A)=n-1 \\ 0, \qquad r(A)<n-1 \\ \end{cases} \qquad (此处为 \ A_{n\times n}) \\ r(A)=n,r(A)=n1,r(A)=n10,r(A)<n1( An×n)

(五)常见处理方法

1)求行列式

1. 所有 行/列 加到某一 行/列

例如

∣ x a 1 a 2 ⋯ a n a 1 x a 2 ⋯ a n a 1 a 2 x ⋯ a n ⋮ ⋮ ⋮ ⋱ ⋮ a 1 a 2 a 3 ⋯ x ∣ = ( x + ∑ i = 1 n a i ) ∣ 1 a 1 a 2 ⋯ a n 1 x a 2 ⋯ a n 1 a 2 x ⋯ a n ⋮ ⋮ ⋮ ⋱ ⋮ 1 a 2 a 3 ⋯ x ∣ \begin{vmatrix} x & a_1 & a_2 & \cdots & a_n \\ a_1 & x & a_2 & \cdots & a_n \\ a_1 & a_2 & x & \cdots & a_n \\ \vdots & \vdots & \vdots & \ddots & \vdots & \\ a_1 & a_2 & a_3 & \cdots & x \\ \end{vmatrix} =(x+\sum_{i=1}^na_i) \begin{vmatrix} 1 & a_1 & a_2 & \cdots & a_n \\ 1 & x & a_2 & \cdots & a_n \\ 1 & a_2 & x & \cdots & a_n \\ \vdots & \vdots & \vdots & \ddots & \vdots & \\ 1 & a_2 & a_3 & \cdots & x \\ \end{vmatrix} xa1a1a1a1xa2a2a2a2xa3anananx=(x+i=1nai)1111a1xa2a2a2a2xa3anananx

2. 加边法

例如

∣ a 1 − b a 2 ⋯ a n a 1 a 2 − b ⋯ a n ⋮ ⋮ ⋱ ⋮ a 1 a 2 ⋯ a n − b ∣ = ∣ 1 a 1 a 2 ⋯ a n 0 a 1 − b a 2 ⋯ a n 0 a 1 a 2 − b ⋯ a n ⋮ ⋮ ⋮ ⋱ ⋮ 0 a 1 a 2 ⋯ a n − b ∣ \begin{vmatrix} a_1-b & a_2 & \cdots & a_n \\ a_1 & a_2-b & \cdots & a_n \\ \vdots & \vdots & \ddots & \vdots \\ a_1 & a_2 & \cdots & a_n-b \\ \end{vmatrix}= \begin{vmatrix} 1 & a_1 & a_2 & \cdots & a_n \\ 0 & a_1-b & a_2 & \cdots & a_n \\ 0 & a_1 & a_2-b & \cdots & a_n \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & a_1 & a_2 & \cdots & a_n-b \\ \end{vmatrix} \\ a1ba1a1a2a2ba2anananb=1000a1a1ba1a1a2a2a2ba2ananananb

此处加边注意不要改变行列式的值

原 式 = ∣ 1 a 1 a 2 ⋯ a n − 1 − b 0 ⋯ 0 − 1 0 − b ⋯ 0 ⋮ ⋮ ⋮ ⋱ ⋮ − 1 0 0 ⋯ − b ∣ = ∣ 1 − ∑ i = 1 n a i b a 1 ⋯ a n 0 − b ⋯ 0 ⋮ ⋮ ⋮ 0 0 ⋯ − b ∣ 原式= \begin{vmatrix} 1 & a_1 & a_2 & \cdots & a_n \\ -1 & -b & 0 & \cdots & 0 \\ -1 & 0 & -b & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ -1 & 0 & 0 & \cdots & -b \\ \end{vmatrix}= \begin{vmatrix} 1-\sum_{i=1}^n\frac{a_i}b & a_1 & \cdots & a_n \\ 0 & -b & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & -b \\ \end{vmatrix} =1111a1b00a20b0an00b=1i=1nbai00a1b0an0b

3. 转化为矩阵相乘

例如求 ∣ a 1 − a n , a 2 − a 1 , ⋯   , a n − a n − 1 ∣ \lvert a_1-a_n,a_2-a_1,\cdots,a_{n}-a_{n-1} \rvert a1an,a2a1,,anan1
∣ a 1 − a n , a 2 − a 1 , ⋯   , a n − a n − 1 ∣ = ∣ [ a 1 , a 2 , ⋯   , a n ] ⋅ [ 1 − 1 0 ⋯ 0 0 0 1 − 1 ⋯ 0 0 0 0 1 ⋯ 0 0 ⋮ ⋮ ⋮ ⋮ ⋮ − 1 0 0 ⋯ 0 1 ] ∣ = ∣ a 1 , a 2 , ⋯   , a n ∣ ⋅ ∣ 1 − 1 0 ⋯ 0 0 0 1 − 1 ⋯ 0 0 0 0 1 ⋯ 0 0 ⋮ ⋮ ⋮ ⋮ ⋮ − 1 0 0 ⋯ 0 1 ∣ \begin{aligned} &\lvert a_1-a_n,a_2-a_1,\cdots,a_{n}-a_{n-1} \rvert \\ &=\left| [a_1,a_2,\cdots,a_n]\cdot \begin{bmatrix} 1 & -1 & 0 & \cdots & 0 & 0 \\ 0 & 1 & -1 & \cdots & 0 & 0 \\ 0 & 0 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & & \vdots & \vdots & \\ -1 & 0 & 0 & \cdots & 0 & 1 \end{bmatrix} \right| \\ &=\lvert a_1,a_2,\cdots,a_n\rvert \cdot \begin{vmatrix} 1 & -1 & 0 & \cdots & 0 & 0 \\ 0 & 1 & -1 & \cdots & 0 & 0 \\ 0 & 0 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & & \vdots & \vdots & \\ -1 & 0 & 0 & \cdots & 0 & 1 \end{vmatrix} \\ \end{aligned} a1an,a2a1,,anan1=[a1,a2,,an]10011100011000000001=a1,a2,,an10011100011000000001

4. 构建递推式

例如
D n = ∣ 2 1 0 ⋯ 0 0 1 2 1 ⋯ 0 0 0 1 2 ⋯ 0 0 ⋮ ⋮ ⋮ ⋮ ⋮ 0 0 0 ⋯ 1 2 ∣ D_n= \begin{vmatrix} 2 & 1 & 0 & \cdots & 0 & 0 \\ 1 & 2 & 1 & \cdots & 0 & 0 \\ 0 & 1 & 2 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & & \vdots & \vdots & \\ 0 & 0 & 0 & \cdots & 1 &2 \end{vmatrix} Dn=21001210012000010002

行列式按第一行展开
D n = 2 D n − 1 + ( − 1 ) 3 ∣ 1 1 0 ⋯ 0 0 0 2 1 ⋯ 0 0 0 1 2 ⋯ 0 0 ⋮ ⋮ ⋮ ⋮ ⋮ 0 0 0 ⋯ 1 2 ∣ n − 1 = 2 D n − 1 − D n − 2 D_n=2D_{n-1}+(-1)^3 \begin{vmatrix} 1 & 1 & 0 & \cdots & 0 & 0 \\ 0 & 2 & 1 & \cdots & 0 & 0 \\ 0 & 1 & 2 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & & \vdots & \vdots & \\ 0 & 0 & 0 & \cdots & 1 &2 \end{vmatrix}_{n-1} =2D_{n-1}-D_{n-2} Dn=2Dn1+(1)310001210012000010002n1=2Dn1Dn2

其中
D 1 = 2 D 2 = ∣ 2 1 1 2 ∣ = 3 \begin{aligned} &D_1=2 \\ &D_2= \begin{vmatrix} 2 & 1 \\ 1 & 2 \\ \end{vmatrix}=3 \end{aligned} D1=2D2=2112=3

2)求矩阵的 n 次方

1. 拆分矩阵

例如矩阵
A = [ 1 2 3 0 1 4 0 0 1 ] = [ 1 0 0 0 1 0 0 0 1 ] + [ 0 2 3 0 0 4 0 0 0 ] A= \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 4 \\ 0 & 0 & 1 \\ \end{bmatrix}= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \end{bmatrix}+ \begin{bmatrix} 0 & 2 & 3 \\ 0 & 0 & 4 \\ 0 & 0 & 0 \\ \end{bmatrix} A=100210341=100010001+000200340

  1. 元素全部 在主对角线上 的矩阵的 n 次方很好求
  2. 元素全部 在主对角线一侧 的矩阵,通常 ∃   N ∈ N ∗ , 使 得   n > N   时 有 A n = O \exist\ N\in N^*,使得\ n>N \ 时有 A^n=O  NN,使 n>N An=O ;例如此处除 E 以外另一个矩阵的 3 次方就为零矩阵了
  3. 利用 多项式定理 展开求矩阵的 n 次方即可
    例如此处
    A n = E n + n E n − 1 B + n ( n − 1 ) 2 E n − 2 B 2 A^n=E^n+nE^{n-1}B+\frac{n(n-1)}{2}E^{n-2}B^2 An=En+nEn1B+2n(n1)En2B2
2. 数学归纳法

给定一个关于 n 的递推式

  1. n = 0 n=0 n=0 时,递推式是否成立
  2. 假设 n = n − 1 n = n - 1 n=n1 时成立
  3. 证明 n = n − 1 n = n - 1 n=n1 成立的时候, n = n n=n n=n 时递推式成立
3. 行列向量相乘

假设有行向量 α 、 β \alpha、\beta αβ A = α β T A=\alpha\beta ^T A=αβT
利用向量相乘的 结合律 ,有
A n = α ( β T α ) ( β T α ) ⋯ ( β T α ) β T A^n=\alpha(\beta^T\alpha)(\beta^T\alpha)\cdots(\beta^T\alpha)\beta^T An=α(βTα)(βTα)(βTα)βT
其中 β T α \beta^T\alpha βTα 是个常数

所以可以将矩阵拆成两个一维向量相乘的形式再求其 n 次方
例如
[ 3 − 1 − 9 3 ] = [ 1 − 3 ] [ 3 − 1 ] − − − − − − − − − − − − − − − − [ 3 − 1 − 9 3 ] n = [ 1 − 3 ] ( 6 n − 1 ) [ 3 − 1 ] \begin{bmatrix} 3 & -1 \\ -9 & 3 \\ \end{bmatrix}= \begin{bmatrix} 1 \\ -3 \\ \end{bmatrix} \begin{bmatrix} 3 & -1 \\ \end{bmatrix}\\ ----------------\\ \begin{bmatrix} 3 & -1 \\ -9 & 3 \\ \end{bmatrix}^n= \begin{bmatrix} 1 \\ -3 \\ \end{bmatrix} (6^{n-1}) \begin{bmatrix} 3 & -1 \\ \end{bmatrix}\\ [3913]=[13][31][3913]n=[13](6n1)[31]

① 可以转化为行列向量相乘的条件

考虑两行向量 α = [ a 1 , a 2 , ⋯   , a n ] \alpha=[a_1,a_2,\cdots,a_n] α=[a1,a2,,an] β = [ b 1 , b 2 , ⋯   , b n ] \beta=[b_1,b_2,\cdots,b_n] β=[b1,b2,,bn]
α T β = [ a 1 b 1 a 1 b 2 ⋯ a 1 b n a 2 b 1 a 2 b 2 ⋯ a 2 b n ⋮ ⋮ ⋮ a n b 1 a n b 2 ⋯ a n b n ] \alpha^T\beta= \begin{bmatrix} a_1b_1 & a_1b_2 & \cdots & a_1b_n \\ a_2b_1 & a_2b_2 & \cdots & a_2b_n \\ \vdots & \vdots & & \vdots & \\ a_nb_1 & a_nb_2 & \cdots & a_nb_n \\ \end{bmatrix} αTβ=a1b1a2b1anb1a1b2a2b2anb2a1bna2bnanbn

将其余所有列的一倍加到第一列,于是有
α T β = [ a 1 ∑ i = 1 n b i a 1 b 2 ⋯ a 1 b n a 2 ∑ i = 1 n b i a 2 b 2 ⋯ a 2 b n ⋮ ⋮ ⋮ a n ∑ i = 1 n b i a n b 2 ⋯ a n b n ] \alpha^T\beta= \begin{bmatrix} a_1\sum_{i=1}^nb_i & a_1b_2 & \cdots & a_1b_n \\ a_2\sum_{i=1}^nb_i & a_2b_2 & \cdots & a_2b_n \\ \vdots & \vdots & & \vdots & \\ a_n\sum_{i=1}^nb_i & a_nb_2 & \cdots & a_nb_n \\ \end{bmatrix} αTβ=a1i=1nbia2i=1nbiani=1nbia1b2a2b2anb2a1bna2bnanbn
于是有
α T β = ∑ i = 1 n b i [ a 1 a 1 b 2 ⋯ a 1 b n a 2 a 2 b 2 ⋯ a 2 b n ⋮ ⋮ ⋮ a n a n b 2 ⋯ a n b n ] \alpha^T\beta=\sum_{i=1}^nb_i \begin{bmatrix} a_1 & a_1b_2 & \cdots & a_1b_n \\ a_2 & a_2b_2 & \cdots & a_2b_n \\ \vdots & \vdots & & \vdots & \\ a_n & a_nb_2 & \cdots & a_nb_n \\ \end{bmatrix} αTβ=i=1nbia1a2ana1b2a2b2anb2a1bna2bnanbn
可以看到从第二列开始,都是第一列的倍数,所以
α T β = ∑ i = 1 n b i [ a 1 0 ⋯ 0 a 2 0 ⋯ 0 ⋮ ⋮ ⋮ a n 0 ⋯ 0 ] \alpha^T\beta=\sum_{i=1}^nb_i \begin{bmatrix} a_1 & 0 & \cdots & 0 \\ a_2 & 0 & \cdots & 0 \\ \vdots & \vdots & & \vdots & \\ a_n & 0 & \cdots & 0 \\ \end{bmatrix} αTβ=i=1nbia1a2an000000
所以得到结论:

  • 两向量相乘得到的矩阵, r a n k ≤ 1 rank\leq1 rank1
  • r a n k ≤ 1 rank\leq1 rank1 的矩阵可以化为两向量相乘的形式
② 行列向量相乘得到的矩阵的推论

此处假定 α β \alpha\beta αβ均为 行向量
α T β = [ a 1 b 1 a 1 b 2 ⋯ a 1 b n a 2 b 1 a 2 b 2 ⋯ a 2 b n ⋮ ⋮ ⋮ a n b 1 a n b 2 ⋯ a n b n ] \alpha^T\beta= \begin{bmatrix} a_1b_1 & a_1b_2 & \cdots & a_1b_n \\ a_2b_1 & a_2b_2 & \cdots & a_2b_n \\ \vdots & \vdots & & \vdots & \\ a_nb_1 & a_nb_2 & \cdots & a_nb_n \\ \end{bmatrix} αTβ=a1b1a2b1anb1a1b2a2b2anb2a1bna2bnanbn
注意,初等变换会改变矩阵的迹(trace)
由上面的式子易知

  • α T α \alpha^T\alpha αTα 是对称矩阵
  • t r ( α T β ) = α β T = ∑ i = 1 n λ i tr(\alpha^T\beta)=\alpha\beta^T=\sum_{i=1}^{n} \lambda_i tr(αTβ)=αβT=i=1nλi

又因为 r ( α T β ) = 1 r(\alpha^T\beta)=1 r(αTβ)=1 ∑ i = 1 n λ i = α β T \sum_{i=1}^{n} \lambda_i=\alpha\beta^T i=1nλi=αβT ,所以

  • α T β \alpha^T\beta αTβ 的特征值为 α β T \alpha\beta^T αβT 和 n-1 个 0
4. 利用相似

由相似有 A n = P Λ n P − 1 A^n=P\Lambda^nP^{-1} An=PΛnP1 ,可以求出矩阵 A 的相似对角阵的 n 次方,然后再导出 A 的 n 次方
对角阵的 n 次方很好求

(六)补充的基本解题方法

1)求两个方程组的公共解

1. 直接联立方程

A x = 0 、 B x = 0 Ax=0、Bx=0 Ax=0Bx=0 的公共解,即联立方程组的解:
[ A B ] x = 0 \begin{bmatrix} A \\ B \\ \end{bmatrix}x=0 [AB]x=0

2. 求得一个方程组的通解代入另一个
3. 求得两个方程组的通解再求解关系

A x = 0 Ax=0 Ax=0 的通解为 k 1 ξ 1 + k 2 ξ 2 + ⋯ + k m ξ m k_1\xi_1+k2\xi_2+\cdots+k_m\xi_m k1ξ1+k2ξ2++kmξm B x = 0 Bx=0 Bx=0 的通解为 l 1 η 1 + l 2 η 2 + ⋯ + l n η n l_1\eta_1+l_2\eta_2+\cdots+l_n\eta_n l1η1+l2η2++lnηn ,求公共解时,两通解应相等,即
k 1 ξ 1 + k 2 ξ 2 + ⋯ + k m ξ m = l 1 η 1 + l 2 η 2 + ⋯ + l n η n k_1\xi_1+k2\xi_2+\cdots+k_m\xi_m=l_1\eta_1+l_2\eta_2+\cdots+l_n\eta_n k1ξ1+k2ξ2++kmξm=l1η1+l2η2++lnηn
解上面的方程得到 l i 、 k j l_i、k_j likj 的关系后,得到的即为公共解

2)同解方程组

A x = 0 Ax=0 Ax=0 B x = 0 Bx=0 Bx=0 是同解方程组

⇔ \Leftrightarrow A x = 0 Ax=0 Ax=0 的解满足 B x = 0 Bx=0 Bx=0 B x = 0 Bx=0 Bx=0 的解满足 A x = 0 Ax=0 Ax=0

⇔ \Leftrightarrow r ( A ) = r ( B ) r(A)=r(B) r(A)=r(B) A x = 0 Ax=0 Ax=0 的解满足 B x = 0 Bx=0 Bx=0 B x = 0 Bx=0 Bx=0 的解满足 A x = 0 Ax=0 Ax=0

⇔ \Leftrightarrow r ( A ) = r ( B ) = r ( [ A B ] ) r(A)=r(B)=r(\begin{bmatrix} A \\ B \end{bmatrix}) r(A)=r(B)=r([AB]) (三秩相同比较方便)

3)过渡矩阵

1. 基变换公式

由基 A A A B B B 的变换,其中 C C C 是过渡矩阵,且 过渡矩阵是 可逆矩阵
B = A C B=AC B=AC

2. 坐标变换公式

在基 A 下的坐标为 x,在基 B 下的坐标为 y;C 是过渡矩阵,x=Cy 称为 y
y = C − 1 x   或   x = C y y=C^{-1}x\ 或 \ x=Cy y=C1x  x=Cy

当然坐标变换也可以转化为一般求方程组的问题

(七)补充的技巧性解题方法

1)利用 秩 的 “夹逼”

例1
  • 已知 A x = 0 Ax=0 Ax=0 有两个线性无关的解向量,则 r ( A ) ≥ 2 r(A)\geq2 r(A)2
  • 又已知 A B = O AB=O AB=O ,且 A B AB AB 都是三阶矩阵,则 r ( A ) + r ( B ) ≤ 3 r(A)+r(B)\leq3 r(A)+r(B)3
  • 还已知 B B B 是非零矩阵,所以 r ( B ) ≠ 0 r(B)\neq0 r(B)=0

综上可知 r ( B ) = 1 r(B)=1 r(B)=1

例2

已知 A m × n A_{m\times n} Am×n B n × m B_{n\times m} Bn×m A B = E m AB=E_m AB=Em

于是有:

  • m ≥ r ( A ) ≥ r ( A B ) = m m\geq r(A)\geq r(AB)=m mr(A)r(AB)=m
  • m ≥ r ( B ) ≥ r ( A B ) = m m\geq r(B)\geq r(AB)=m mr(B)r(AB)=m

所以 r ( A ) = r ( B ) = m r(A)=r(B)=m r(A)=r(B)=m , 即 A 的行向量组线性无关;B 的列向量组线性无关

其中主要利用 秩的不等式基础解系的数量

2)基础解系等价的充要条件

[ β 1 , β 2 , ⋯   , β n ] = [ α 1 , α 2 , ⋯   , α n ] A [\beta_1,\beta_2,\cdots,\beta_n]=[\alpha_1,\alpha_2,\cdots,\alpha_n]A [β1,β2,,βn]=[α1,α2,,αn]A A A A 矩阵满秩

则基础解系 [ β 1 , β 2 , ⋯   , β n ] [\beta_1,\beta_2,\cdots,\beta_n] [β1,β2,,βn] [ α 1 , α 2 , ⋯   , α n ] [\alpha_1,\alpha_2,\cdots,\alpha_n] [α1,α2,,αn] 等价

3)AB=O 用来找解向量

如果题目中给了 A B = O AB=O AB=O 参照 A x = 0 Ax=0 Ax=0 可知

B 矩阵的每一个列向量都是 A x = 0 Ax=0 Ax=0 的解向量

其中最常见的情况由关键公式推出,即

A ∗ = ∣ A ∣ A − 1 A^*=|A|A^{-1} A=AA1 ,两边同时乘 A 得到 A A ∗ = ∣ A ∣ E AA^*=|A|E AA=AE 当 A 不满秩时,可以得到 A A ∗ = ∣ A ∣ E = O AA^*=|A|E=O AA=AE=O

即得到了 A A ∗ = O AA^*=O AA=O A ∗ A^* A 的每一个列向量都是 A x = 0 Ax=0 Ax=0 的解

所以一般来讲,只有 r ( A ) = n − 1 r(A)=n-1 r(A)=n1 时, 才会有 ∣ A ∣ = 0 |A|=0 A=0 ,而此时 r ( A ∗ ) = 1 r(A^*)=1 r(A)=1 ,即只有一个解

  • 3
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值