2019-11-10 等价、相似、合同的一些概念

等价

m × n m×n m×n阶矩阵 A \boldsymbol A A B \boldsymbol B B,如果这两个矩阵满足
B = Q A P \boldsymbol B = \boldsymbol Q\boldsymbol A\boldsymbol P B=QAP其中, Q \boldsymbol Q Q是m×m阶可逆矩阵, P \boldsymbol P P是n×n阶可逆矩阵,即 A ≅ B \boldsymbol A\cong\boldsymbol B AB,那么这两个矩阵之间是等价关系。也就是说,存在可逆矩阵,使得 A \boldsymbol A A经过有限次的初等变换得到 B \boldsymbol B B
其性质为:

  • A \boldsymbol A A B \boldsymbol B B秩相同,即初等变换不改变秩
  • 相似和合同均属于等价的特殊形式
  • A \boldsymbol A A n n n阶满秩矩阵,则有 A ≅ E \boldsymbol A\cong\boldsymbol E AE(即 A − 1 \boldsymbol A^{-1} A1 A \boldsymbol A A均是有限次的初等变换矩阵相乘得到,均等价于单位阵)
  • 两个 m × n m×n m×n阶矩阵等价的充要条件是秩相同

相似

A \boldsymbol A A B \boldsymbol B B都是 n n n阶方阵,若存在 n n n阶可逆阵 P \boldsymbol P P(不唯一且有可能是复矩阵),使
P − 1 A P = B \boldsymbol P^{-1}\boldsymbol A\boldsymbol P=\boldsymbol B P1AP=B则称矩阵 A \boldsymbol A A B \boldsymbol B B相似,记为 A ∼ B \boldsymbol A\sim\boldsymbol B AB
其性质为:

  • det ⁡ ( A − λ E ) = det ⁡ ( B − λ E ) \det (\boldsymbol A-\lambda\boldsymbol E)=\det(\boldsymbol B-\lambda\boldsymbol E) det(AλE)=det(BλE),即特征值相同(但是反之不行,即特征值相同推不出相似)
  • det ⁡ A = det ⁡ B \det \boldsymbol A=\det\boldsymbol B detA=detB,即行列式相同(因为行列式是所有特征值的乘积,特征值不变,则行列式不变)
  • A \boldsymbol A A可逆,则 B \boldsymbol B B也可逆,且 A − 1 ∼ B − 1 \boldsymbol A^{-1}\sim\boldsymbol B^{-1} A1B1
  • f ( A ) ∼ f ( B ) f(\boldsymbol A)\sim f(\boldsymbol B) f(A)f(B)
  • n n n阶方阵 A \boldsymbol A A可对角化的充要条件是 A \boldsymbol A A有n个线性无关的特征向量(特征值互不相同,则特征向量线性无关;但是特征向量线性无关不能说特征值互不相同;则若所有特征值不同,则可对角化;若所有重特征根对应的特征向量无关,可对角化

合同

A \boldsymbol A A B \boldsymbol B B都是 n n n阶方阵,若存在 n n n阶可逆阵 P \boldsymbol P P,使
P T A P = B \boldsymbol P^{T}\boldsymbol A\boldsymbol P=\boldsymbol B PTAP=B则称矩阵 A \boldsymbol A A B \boldsymbol B B合同,记为 A ≃ B \boldsymbol A\simeq\boldsymbol B AB
性质为:

  • 合同且均对称,则秩相同
  • 合同与相似是两个概念,合同不能保证特征值不变

相关概念

正交矩阵

如果 n n n阶实方阵 A \boldsymbol A A满足 A T = A − 1 \boldsymbol A^T=\boldsymbol A^{-1} AT=A1则称 A \boldsymbol A A为正交矩阵
性质为:

  • det ⁡ A = ± 1 \det \boldsymbol A=±1 detA=±1
  • 实对称 A \boldsymbol A A是正交矩阵的充要条件是 A \boldsymbol A A的行向量是单位正交向量组(这样会自动保证列向量是单位正交向量组,反之亦然)
  • ∥ A T x ∥ 2 = ∥ x ∥ 2 \| \boldsymbol A^{T} x \|_2 = \| x \|_2 ATx2=x2
  • ∥ A T ∥ 1 ∥ A ∥ 1 ⩽ 3 \| \boldsymbol A^{T} \|_1\| \boldsymbol A \|_1 \leqslant 3 AT1A13
    proof: ( a + b + c ) ( d + e + h ) ⩽ 3 2 ( a 2 + b 2 + c 2 + d 2 + e 2 + h 2 ) = 3 (a+b+c)(d+e+h)\leqslant\frac{3}{2}(a^2+b^2+c^2+d^2+e^2+h^2)=3 (a+b+c)(d+e+h)23(a2+b2+c2+d2+e2+h2)=3

实对称阵的相似矩阵

A \boldsymbol A A n n n阶实对称方阵,则必存在正交矩阵 Q \boldsymbol Q Q,使得
Q − 1 A Q = Q T A Q = diag { λ 1 , λ 2 , . . . , λ n } \boldsymbol Q^{-1}\boldsymbol A\boldsymbol Q=\boldsymbol Q^{T}\boldsymbol A\boldsymbol Q=\textrm{diag} \{{\lambda_1,\lambda_2,...,\lambda_n}\} Q1AQ=QTAQ=diag{λ1,λ2,...,λn}

  • 实对称阵( A T = A \boldsymbol A^T=\boldsymbol A AT=A)的特征值均为实数
  • 实对称阵的两个不等特征值对应的两个特征向量正交
  • 实对称阵可能存在重特征值,也可能不存在冲特征值
  • 实对称阵重特征根对应的特征向量无关
  • 实对称阵必可以对角化
  • 二次型中的 A \boldsymbol A A为实对称阵

行列式

  • det ⁡ ( l A ) = l n A \det (l\boldsymbol A)=l^n\boldsymbol A det(lA)=lnA
  • det ⁡ ( A B ) = det ⁡ A det ⁡ B \det (\boldsymbol A\boldsymbol B)=\det\boldsymbol A\det \boldsymbol B det(AB)=detAdetB

对称

  • 反对称矩阵的主对角线一定为0
  • 对称 * 对称,不能保证对称(除非 A B = B A \boldsymbol A\boldsymbol B=\boldsymbol B\boldsymbol A AB=BA
  • 对称正定 * 对称正定,不能保证对称,所以不能叫正定(除非 A B = B A \boldsymbol A\boldsymbol B=\boldsymbol B\boldsymbol A AB=BA,其乘积才是对称正定)
  • 对称正定 * 对称正定,乘积的特征值均正(Cholesky分解为可逆下三角与其转置的乘积)

特征值

  • A + E \boldsymbol A+\boldsymbol E A+E的特征值等于= A \boldsymbol A A的特征值加1

问题

两个特征值均正的矩阵相乘,其乘积的特征值均正吗?

  • 4
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 2
    评论
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

DR-ZF-

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值