Lebesgue积分及应用

Lebesgue积分及应用

一、Lebesgue测度和可测函数

1.1 Riemann积分和Lebesgue积分

Riemann(黎曼)积分,即我们在高等数学/微积分等课程中学习的定积分。但是Riemann积分存在一定的局限与不足,于是上世纪初,法国数学家Lebesgue提出了Lebesgue积分。

Riemann积分主要存在的局限性有:1.可以处理的函数要求函数要是连续函数或分段连续函数 2.极限符号与积分符号交换次序时,需要满足一致性条件,而这个条件往往不容易满足 3.重积分化成累次积分、累次积分交换次序等也需要满足一些条件才能使用。

针对Riemann积分的缺陷,产生了Lebesgue积分。其大致思想如下:

f f f [ a , b ] [a,b] [a,b] 上的有界函数,(既然Riemann积分是在定义域上作分化,对函数的连续性要求过于苛刻),那么Lebesgue积分就在值域上作分化。即设:1
μ = sup ⁡ x ∈ [ a , b ] f ( x ) , λ = inf ⁡ x ∈ [ a , b ] f ( x ) \mu=\sup_{x\in[a,b]}f(x),\quad \lambda=\inf_{x\in[a,b]}f(x) μ=x[a,b]supf(x),λ=x[a,b]inff(x)
[ λ , μ ] [\lambda,\mu] [λ,μ] 的一个分化,使
λ = y 0 < y 1 < y 2 < ⋯ < y n = μ \lambda=y_0<y_1<y_2<\cdots<y_n=\mu λ=y0<y1<y2<<yn=μ
对于 i = 1 , 2 , ⋯   , n i=1,2,\cdots,n i=1,2,,n,任取 η i ∈ [ y i − 1 , y i ] \eta_i\in[y_{i-1},y_i] ηi[yi1,yi],并令 E i = { x ∣ f ( x ) ∈ [ y i − 1 , y i ] } E_i=\{x|f(x)\in[y_{i-1},y_i]\} Ei={xf(x)[yi1,yi]},若 E i E_i Ei 的“长度”可以测量出来,记为 m E i mE_i mEi,则可做和式
∑ i = 1 n η i m E i \sum_{i=1}^n\eta_imE_i i=1nηimEi
当分化无限细的时候,记 δ = max ⁡ 1 ≤ i ≤ n ( y i − y i − 1 ) \delta=\max_{1\leq i\leq n}(y_i-y_{i-1}) δ=max1in(yiyi1),即当 n → ∞ ,   δ → 0 n\to \infty,\ \delta\to 0 n, δ0 时,若上述和式的极限存在,则称 f f f 是Lebesgue可积的,其极限值就是 f f f 的 Lebesgue积分。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

Lebesgue曾经形象的描述过Lebesgue积分:

  • 想象一位零售商,他在每天营业结束以后汇总营业收入,如果他依次累加每笔收入:10美元、10美分、25美分……,那么他相当于从左至右跨越区间[a,b]提取函数值,这就是Riemann积分。
  • 如果这位零售商采用另一种方法,按照每笔款的面值统计,比如10美元50笔,10美分30笔,25美分50笔,这样累加起来就是Lebesgue积分。

根据以上Lebesgue积分的基本思想,会带来几个问题:

  1. 怎样定义长度 m E i mE_i mEi
  2. 是否所有集合 E i E_i Ei 在所定义的“长度”下都是可以测量的?
  3. 什么样的函数 f f f 才能保证上述分化产生的 E i E_i Ei 的“长度”可测,即可测集和测度的问题。

1.2 直线上的Lebesgue测度

【定义】外测度(Outer Measure)

E ⊂ R E\subset \R ER,定义
m ∗ E = inf ⁡ { ∑ n ∣ I n ∣ ∣ ⋃ n I n ⊃ E , { I n }  是开区间列 } m^*E=\inf\left\{ \sum_n|I_n|\left|\bigcup_nI_n\supset E,\{I_n\}\text{ 是开区间列} \right. \right\} mE=inf{nIn nInE,{In} 是开区间列}
m ∗ E m^*E mE E E E 的外测度

由于 ∑ n ∣ I n ∣ \sum_n|I_n| nIn 是正的,所以必有下界;空集的外测度是0;开区间的外测度就是区间的长度; E E E 无界的时候, m ∗ E m^*E mE 的也可能是 ∞ \infty

m ∗ m^* m 是一种单目运算符号

【定理】外测度的性质

E , F , E k ( k ∈ Z + ) E,F,E_k(k\in \mathbb Z_+) E,F,Ek(kZ+) 均为 R \R R 中的集合, m ∗ m^* m 为外测度,则

  • 非负性: m ∗ E > 0 m^*E>0 mE>0 m ∗ ∅ = 0 m^*\varnothing=0 m=0
  • 单调性:若 E ⊂ F E\subset F EF,则 m ∗ E ≤ m ∗ F m^*E\leq m^*F mEmF
  • 次可列可加性:

m ∗ ( ⋃ k = 1 ∞ E k ) ≤ ∑ k = 1 ∞ m ∗ E k m^*\left( \bigcup_{k=1}^{\infty}E_k \right)\leq\sum_{k=1}^{\infty}m^*E_k m(k=1Ek)k=1mEk

  • 分离集的可加性:设 D ( E , F ) = inf ⁡ { ∣ x − y ∣ ∣ x ∈ E , y ∈ F } > 0 D(E,F)=\inf\{|x-y|\mid x\in E,y\in F \}>0 D(E,F)=inf{xyxE,yF}>0,则

m ∗ ( E ∪ F ) = m ∗ E + m ∗ F m^*(E\cup F)=m^*E+m^*F m(EF)=mE+mF

【定义】内测度

I I I 为一有界闭区间, E ⊂ I E\subset I EI,令
m ∗ E = sup ⁡ { ∣ I n ∣ − ∑ n ∣ I n ∣ ∣ I − ⋃ n I n ⊂ E , { I n }  是开区间列 } m_*E=\sup\left\{|I_n| -\sum_n|I_n|\left|I-\bigcup_nI_n\subset E,\{I_n\}\text{ 是开区间列} \right. \right\} mE=sup{InnIn InInE,{In} 是开区间列}
m ∗ E m_*E mE E E E 的内测度

【定义】可测、Lebesgue测度
  • E E E 为有界集,若 m ∗ E = m ∗ E m_*E=m^*E mE=mE,则称 E E E 是可测的。若 E E E 为无界集,则 E E E 可测是指每个 E ∩ ( − n , n ) E\cap(-n,n) E(n,n) 可测( n ∈ Z + n\in\mathbb Z_+ nZ+

  • 对于可测集 E E E m ∗ E m^*E mE m ∗ E m_*E mE 称为 E E E 的 Lebesgue 测度,记为 m E mE mE

【定理】卡氏条件(Carathéodory 条件)

E ⊂ R E\subset\R ER,则 E E E 可测当且仅当 ∀ F ⊂ R \forall F\subset\R FR,有
m ∗ F = m ∗ ( F ∩ E ) + m ∗ ( F − E ) m^*F=m^*(F\cap E)+m^*(F-E) mF=m(FE)+m(FE)

【定理】可测集与Lebesgue测度的性质
  • E E E 可测当且仅当 E C E^C EC 可测

  • E 1 , E 2 E_1,E_2 E1,E2 均可测,则 E = E 1 ∪ E 2 E=E_1\cup E_2 E=E1E2 可测,且若 E 1 ∩ E 2 = ∅ E_1\cap E_2=\varnothing E1E2=,则对任何集合 F F F
    m ∗ ( F ∩ E ) = m ∗ ( F ∩ E 1 ) + m ∗ ( F ∩ E 2 ) m^*(F\cap E)=m^*(F\cap E_1)+m^*(F\cap E_2) m(FE)=m(FE1)+m(FE2)
    特别取 F = E F=E F=E,则 m E = m E 1 + m E 2 mE=mE_1+mE_2 mE=mE1+mE2

  • E 1 , E 2 E_1,E_2 E1,E2 均可测,则 E = E 1 ∩ E 2 E=E_1\cap E_2 E=E1E2 可测

  • { E k } \{E_k\} {Ek} 为一系列可测集,则 E = ⋃ k = 1 ∞ E k E=\bigcup_{k=1}^\infty E_k E=k=1Ek 可测。且若 E k E_k Ek 两两不相交,则有
    m E = m ( ⋃ k = 1 ∞ E k ) = ∑ k = 1 ∞ m E k mE=m(\bigcup_{k=1}^{\infty}E_k)=\sum_{k=1}^{\infty} mE_k mE=m(k=1Ek)=k=1mEk
    上式称为测度的可列可加性

  • { E k } \{E_k\} {Ek} 为一系列可测集,即 E = ⋂ k = 1 ∞ E k E=\bigcap_{k=1}^{\infty}E_k E=k=1Ek 可测

  • { E k } \{E_k\} {Ek} 为一系列渐伸可测集,即 E 1 ⊂ E 2 ⊂ E 3 ⊂ ⋯ ⊂ E n ⊂ ⋯ E_1\subset E_2\subset E_3\subset\cdots\subset E_n\subset\cdots E1E2E3En,则
    m ( ⋃ k = 1 ∞ E k ) = lim ⁡ n → ∞ m E n m\left( \bigcup_{k=1}^{\infty}E_k \right)=\lim_{n\to\infty}mE_n m(k=1Ek)=nlimmEn

  • { E k } \{E_k\} {Ek} 为一系列渐缩可测集,即 E 1 ⊃ E 2 ⊃ E 3 ⊃ ⋯ ⊃ E n ⊃ ⋯ E_1\supset E_2\supset E_3\supset\cdots\supset E_n\supset\cdots E1E2E3En,且 m E 1 < ∞ mE_1<\infty mE1<,则
    m ( ⋂ k = 1 ∞ E k ) = lim ⁡ n → ∞ m E n m\left( \bigcap_{k=1}^{\infty}E_k \right)=\lim_{n\to\infty}mE_n m(k=1Ek)=nlimmEn
    最后两个性质称为测度的连续性

1.3 可测函数

【定义】可测函数

f f f 为定义在集合 E E E 上的函数,若 ∀ a ∈ R \forall a\in \R aR E ( f > a ) E(f>a) E(f>a) 是可测集,则称 f f f E E E 上的可测函数

【定理】可测函数的等价表述

f f f 为定义在集合 E E E 上的实函数,则下列说法等价

  • f f f 是可测的
  • ∀ a ∈ R \forall a\in\R aR E ( f ≥ a ) E(f\geq a) E(fa) 可测
  • ∀ a , b ∈ R \forall a,b\in\R a,bR,设 a < b a<b a<b,则 E ( a ≤ f < b ) E(a\leq f<b) E(af<b) 可测
【定理】可测函数的性质

可测函数对一些运算是封闭的,因此是一类很广泛的函数

f , g f,g f,g E E E 上的可测函数,则:

  • ∀ α ∈ R \forall \alpha\in \R αR α f \alpha f αf 是可测函数
  • f + g f+g f+g 是可测函数
  • f g fg fg 是可测函数
  • g ≠ 0 g\neq0 g=0 时, f / g f/g f/g 是可测函数
  • max ⁡ { f , g } \max\{f,g\} max{f,g} min ⁡ { f , g } \min\{f,g\} min{f,g} 是可测函数

{ f n } \{f_n\} {fn} E E E 上的一列可测函数, f = lim ⁡ n → ∞ f n f=\lim_{n\to\infty} f_n f=limnfn,则 f f f 也可测

二、Lebesgue积分

2.1 Lebesgue积分的定义

【定义】简单函数

m E < ∞ mE<\infty mE<,称形如
φ ( x ) = ∑ k = 1 n c k χ E k ( x ) \varphi(x)=\sum_{k=1}^{n}c_k\chi_{E_{k}}(x) φ(x)=k=1nckχEk(x)
的函数为简单函数,其中 χ E k ( x ) \chi_{E_{k}}(x) χEk(x) 是可测集 E k E_k Ek 的示性函数, E k E_k Ek 互不相交, ⋃ k = 1 n E k = E \bigcup_{k=1}^nE_k=E k=1nEk=E

【定理】非负的简单函数对非负的 f 的逼近

f f f E E E 上的非负可测函数,则存在一列非负递增的简单函数列
0 ≤ φ 1 ( x ) ≤ φ 2 ( x ) ≤ ⋯ 0\leq \varphi_1(x)\leq \varphi_2(x)\leq\cdots 0φ1(x)φ2(x)
使得 lim ⁡ n → ∞ φ n ( x ) = f ( x ) \lim_{n\to\infty}\varphi_n(x)=f(x) limnφn(x)=f(x)

【定义】简单函数的积分

m E < ∞ mE<\infty mE< φ ( x ) \varphi(x) φ(x) 是简单函数,则定义 φ \varphi φ E E E 上的积分为
∫ E φ ( x ) d x = ∑ k = 1 n c k m E k \int_E\varphi(x)dx=\sum_{k=1}^nc_kmE_k Eφ(x)dx=k=1nckmEk

【定理】简单函数及其积分的性质

m E < ∞ mE<\infty mE< φ , ψ \varphi,\psi φψ E E E 上的简单函数,则

  • 线性性: α φ + β ψ \alpha\varphi+\beta\psi αφ+βψ 仍是简单函数,且
    ∫ E ( α φ ( x ) + β ψ ( x ) ) d x = α ∫ E φ ( x ) d x + β ∫ E ψ ( x ) d x \int_E(\alpha\varphi(x)+\beta\psi(x))dx=\alpha\int_E\varphi(x)dx+\beta\int_E\psi(x)dx E(αφ(x)+βψ(x))dx=αEφ(x)dx+βEψ(x)dx

  • 可加性:设 E 1 , E 2 , ⋯   , E l E_1,E_2,\cdots,E_l E1,E2,,El 两两不相交,且 E = ⋃ k = 1 l E k E=\bigcup_{k=1}^lE_k E=k=1lEk,则
    ∫ E φ ( x ) d x = ∑ k = 1 l ∫ E k φ ( x ) d x \int_E\varphi(x)dx=\sum_{k=1}^l\int_{E_k}\varphi(x)dx Eφ(x)dx=k=1lEkφ(x)dx
    特别记
    φ + ( x ) = { φ ( x ) , φ ( x ) ≥ 0 0    , φ ( x ) < 0 φ − ( x ) = { − φ ( x ) , φ ( x ) < 0 0   , φ ( x ) ≥ 0 \varphi_+(x)= \begin{cases} \varphi(x),\quad\varphi(x)\geq0 \\ 0\quad\ \ ,\quad \varphi(x)<0 \\ \end{cases} \quad\quad \varphi_-(x)= \begin{cases} -\varphi(x),\quad\varphi(x)<0 \\ 0\quad\quad\ ,\quad\varphi(x)\geq0\\ \end{cases} φ+(x)={φ(x),φ(x)00  ,φ(x)<0φ(x)={φ(x),φ(x)<00 ,φ(x)0

    ∫ E φ ( x ) d x = ∫ E φ + ( x ) d x − ∫ E φ − ( x ) d x \int_E\varphi(x)dx=\int_E\varphi_+(x)dx-\int_E\varphi_-(x)dx Eφ(x)dx=Eφ+(x)dxEφ(x)dx

  • 单调性:若 φ ≤ ψ \varphi\leq\psi φψ,则

    ∫ E φ ( x ) d x ≤ ∫ E ψ ( x ) d x \int_E\varphi(x)dx\leq\int_E\psi(x)dx Eφ(x)dxEψ(x)dx

【定义】非负可测函数的积分

m E < ∞ mE<\infty mE<,设 f f f E E E 上的非负可测函数,定义 f f f E E E 上的积分为
∫ E f ( x ) d x = sup ⁡ 0 ≤ φ ≤ f ∫ E φ ( x ) d x \int_Ef(x)dx=\sup_{0\leq\varphi\leq f}\int_E\varphi(x)dx Ef(x)dx=0φfsupEφ(x)dx
其中 φ \varphi φ 是简单函数。当上式右边为有限数,就称 f f f E E E 上可积,当右边为 ∞ \infty 就称 f f f E E E 上的积分为 ∞ \infty

【定义】非负函数的积分

下面再将积分的定义扩充到一般非负函数

m E < ∞ mE<\infty mE<,设 f f f E E E 上的非负函数,定义非负函数
f + ( x ) = { f ( x ) , f ( x ) ≥ 0 0    , f ( x ) < 0 f − ( x ) = { − f ( x ) , f ( x ) < 0 0   , f ( x ) ≥ 0 f_+(x)= \begin{cases} f(x),\quad f(x)\geq0 \\ 0\quad\ \ ,\quad f(x)<0 \\ \end{cases} \quad\quad f_-(x)= \begin{cases} -f(x),\quad f(x)<0 \\ 0\quad\quad\ ,\quad f(x)\geq0\\ \end{cases} f+(x)={f(x),f(x)00  ,f(x)<0f(x)={f(x),f(x)<00 ,f(x)0
分别称为 f f f 的正部与负部。

定义 f f f E E E 上的积分为:
∫ E f ( x ) d x = ∫ E f + ( x ) d x − ∫ E f − ( x ) d x \int_Ef(x)dx=\int_Ef_+(x)dx-\int_Ef_-(x)dx Ef(x)dx=Ef+(x)dxEf(x)dx
当上式右边为有限数时,就称 f f f E E E 上Lebesgue可积;
当右边两项中有一项为有限数,一项为无穷时,就称 f f f E E E 上的Lebesgue积分为 ∞ \infty
当右边两项均为无穷时,就称 f f f E E E 上Lebesgue不可积;

2.2 Lebesgue积分的性质

【定理】Lebesgue积分的性质

m E < ∞ mE<\infty mE<,设 f f f E E E 上的可积函数,则其积分有下列性质:

  • 可加性:即设可测集 E 1 , E 2 , ⋯   , E n E_1,E_2,\cdots,E_n E1,E2,,En 两两不相交, E = ⋃ k = 1 n E k E=\bigcup_{k=1}^nE_k E=k=1nEk,则
    ∫ E f ( x ) d x = ∑ k = 1 n ∫ E k f ( x ) d x \int_Ef(x)dx=\sum_{k=1}^n\int_{E_k}f(x)dx Ef(x)dx=k=1nEkf(x)dx

  • σ \sigma σ 可加性:即设 { E k } \{E_k\} {Ek} 是一列不交的可测集, E = ⋃ k = 1 ∞ E k E=\bigcup_{k=1}^\infty E_k E=k=1Ek,则
    ∫ E f ( x ) d x = ∑ k = 1 ∞ ∫ E k f ( x ) d x \int_Ef(x)dx=\sum_{k=1}^\infty\int_{E_k}f(x)dx Ef(x)dx=k=1Ekf(x)dx

  • 绝对连续性:即对 ∀ ε > 0 \forall\varepsilon>0 ε>0 ∃ δ > 0 \exist\delta>0 δ>0,使得对任意可测子集 e ⊂ E e\subset E eE,若 m e < δ me<\delta me<δ,则
    ∣ ∫ e f ( x ) d x ∣ < ε \left| \int_ef(x)dx \right|<\varepsilon ef(x)dx <ε

【定理】通过极限求积分

通过求极限的方式确定函数的积分比用定义求上确界的方式求积分通常要更为便利

m E < ∞ mE<\infty mE<,设 f f f E E E 上的非负可积函数, { φ n } \{\varphi_n\} {φn} 为一系列简单函数,满足 φ 1 ≤ φ 2 ≤ ⋯ \varphi_1\leq\varphi_2\leq\cdots φ1φ2,且 lim ⁡ n → ∞ φ n ( x ) = f ( x ) \lim_{n\to\infty}\varphi_n(x)=f(x) limnφn(x)=f(x),则
∫ E f ( x ) d x = lim ⁡ n → ∞ ∫ E φ n ( x ) d x \int_Ef(x)dx=\lim_{n\to\infty}\int_E\varphi_n(x)dx Ef(x)dx=nlimEφn(x)dx

【定理】一般可积函数的运算性质

m E < ∞ mE<\infty mE<,设 f , g f,g f,g E E E 上的可积函数,则:

  • 线性性:
    ∫ E ( α f + β g ) ( x ) d x = α ∫ E f ( x ) d x + β ∫ E g ( x ) d x \int_E(\alpha f+\beta g)(x)dx=\alpha\int_Ef(x)dx+\beta\int_Eg(x)dx E(αf+βg)(x)dx=αEf(x)dx+βEg(x)dx

  • 单调性:若 f ( x ) ≤ g ( x ) f(x)\leq g(x) f(x)g(x),则
    ∫ E f ( x ) d x ≤ ∫ E g ( x ) d x \int_Ef(x)dx\leq\int_Eg(x)dx Ef(x)dxEg(x)dx

  • 介值性:若 a ≤ f ( x ) ≤ b a\leq f(x)\leq b af(x)b,则

a m E ≤ ∫ E f ( x ) d x ≤ b m E amE\leq\int_Ef(x)dx\leq bmE amEEf(x)dxbmE

  • 若在 E E E f = g ( a . e . ) f=g\quad(a.e.) f=g(a.e.)2,则
    ∫ E f ( x ) d x = ∫ E g ( x ) d x \int_Ef(x)dx=\int_Eg(x)dx Ef(x)dx=Eg(x)dx

2.3 Lebesgue积分的几个重要定理

极限好与积分号换序在前面已经简单讨论过了,本节将这个问题一般化

【定理】求和与积分的换序

∑ n = 1 ∞ u n ( x ) , u n ( x ) ( n ∈ Z + ) \sum_{n=1}^\infty u_n(x),u_n(x)(n\in \mathbb Z_+) n=1un(x),un(x)(nZ+) E E E 上的非负可测函数,则
∫ E ∑ n = 1 ∞ u n ( x ) d x = ∑ n = 1 ∞ ∫ E u n ( x ) d x \int_E \sum_{n=1}^\infty u_n(x)dx=\sum_{n=1}^\infty\int_Eu_n(x)dx En=1un(x)dx=n=1Eun(x)dx

【定理】Levi 引理

设可测函数列满足 0 ≤ f 1 ≤ f 2 ≤ ⋯ 0\leq f_1\leq f_2\leq \cdots 0f1f2 lim ⁡ n → ∞ f n = f \lim_{n\to\infty}f_n=f limnfn=f,则
∫ E f ( x ) d x = lim ⁡ n → ∞ ∫ E f n ( x ) d x \int_Ef(x)dx=\lim_{n\to\infty}\int_Ef_n(x)dx Ef(x)dx=nlimEfn(x)dx

【定理】Fatou 引理

f n f_n fn 非负可测,则
∫ E lim ⁡ n → ∞ inf ⁡ k ≥ n f k ( x ) d x ≤ lim ⁡ n → ∞ inf ⁡ k ≥ n ∫ E f k ( x ) d x \int_E\lim_{n\to\infty}\inf_{k\geq n}f_k(x)dx\leq\lim_{n\to\infty}\inf_{k\geq n}\int_Ef_k(x)dx Enlimkninffk(x)dxnlimkninfEfk(x)dx

【定理】Lebesgue 控制收敛定理

{ f n } \{f_n\} {fn} E E E 上可测函数列, f ( x ) = lim ⁡ n → ∞ f n ( x ) f(x)=\lim_{n\to\infty}f_n(x) f(x)=limnfn(x),且 ∣ f n ( x ) ∣ ≤ g ( x ) |f_n(x)|\leq g(x) fn(x)g(x),又 g ( x ) g(x) g(x) E E E 上可积,则 f ( x ) f(x) f(x) E E E 上可积,且
∫ E f ( x ) d x = lim ⁡ n → ∞ ∫ E f n ( x ) d x \int_Ef(x)dx=\lim_{n\to\infty}\int_Ef_n(x)dx Ef(x)dx=nlimEfn(x)dx

【定理】有界收敛定理

m E < ∞ mE<\infty mE< { f n } \{f_n\} {fn} E E E 上可测,且 ∣ f n ∣ ≤ M |f_n|\leq M fnM M M M 为常数,又 lim ⁡ n → ∞ f n ( x ) = f ( x ) \lim_{n\to\infty} f_n(x)=f(x) limnfn(x)=f(x),则 f f f E E E 上可积,且
∫ E f ( x ) d x = lim ⁡ n → ∞ ∫ E f n ( x ) d x \int_Ef(x)dx=\lim_{n\to\infty}\int_Ef_n(x)dx Ef(x)dx=nlimEfn(x)dx

【定理】Fubini 定理

A ∈ R p A\in\R^p ARp B ∈ R q B\in\R^q BRq 是两个可测集, f f f A × B A\times B A×B 上的可测函数,若 f f f 是 Lebesgue 可积的,则有
∫ A × B f ( x , y ) d x d y = ∫ A d x ∫ B f ( x , y ) d y = ∫ B d y ∫ A f ( x , y ) d x \int_{A\times B}f(x,y)dxdy=\int_Adx\int_Bf(x,y)dy=\int_Bdy\int_Af(x,y)dx A×Bf(x,y)dxdy=AdxBf(x,y)dy=BdyAf(x,y)dx

三、LP空间(了解即可)

3.1 LP 空间及函数的收敛性

【定义】收敛

f n ( n ∈ Z + ) f_n(n\in\mathbb Z_+) fn(nZ+) f f f 均为 E E E 上的可测函数

  • m E ( f n ↛ f ) = 0 mE(f_n\nrightarrow f)=0 mE(fnf)=0,就称 f n f_n fn 几乎处处(a.e.)2收敛于 f f f
  • 若对 ∀ ε > 0 \forall\varepsilon>0 ε>0 lim ⁡ m E ( ∣ f n − f ∣ > ε ) = 0 \lim mE(|f_n-f|>\varepsilon)=0 limmE(fnf>ε)=0,就称 f n f_n fn 依测度收敛于 f f f
【定理】依测度收敛的判断

f n ( n ∈ Z + ) f_n(n\in\mathbb Z_+) fn(nZ+) f f f 均为 E E E 上的可测函数, m E ≤ ∞ mE\leq\infty mE,则

  • f n f_n fn 几乎处处收敛于 f f f ,则 f n f_n fn 依测度收敛于 f f f
  • f n f_n fn 是P方收敛于 f ( 1 ≤ p < ∞ ) f(1\leq p<\infty) f(1p<),则 f n f_n fn 依测度收敛于 f f f
【定理】Riesz 定理

f n ( n ∈ Z + ) f_n(n\in\mathbb Z_+) fn(nZ+) f f f E E E 上的可测函数, m E < ∞ mE<\infty mE<,又 f n f_n fn 依测度收敛于 f f f,则存在子列 { f n k } \{f_{nk}\} {fnk},使 f n k f_{nk} fnk 几乎处处收敛于 f f f

3.2 LP 空间的完备性和可分性

【定理】LP 空间的完备性

L P ( E ) L^P(E) LP(E) 是完备的 ( 1 ≤ P < ∞ ) (1\leq P<\infty) (1P<)

【定理】LP 空间的可分性

L P ( E ) L^P(E) LP(E) 是可分的



  1. 【sup与inf】sup E 称为数集 E 的上确界(supremum),inf E 称为数集 E 的下确界(infimum)。 ↩︎

  2. 【a.e.】 是 “asymptotically equal to” 的缩写,意思是"渐近等于"。 ↩︎ ↩︎

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
始于20世纪80年代,我国许多院校开设了面向工科研究生的“应用泛函分析”课程,也有一批相关的“应用泛函分析”教材问世。东华大学(前中国纺织大学)也是从20世纪80年代初开始向各工科专业研究生开设讲授泛函分析基础知识的“高等分析”课程的。以后“高等分析”更名为“现代应用数学方法”,至今已进行了25年的教学实践。一批又一批的工科研究生通过这门课程的学习,使自己的数学修养得到了显著的提高,并学到了许多在理论与实践中应用现代数学方法解决工程技术领域问题的基本方法。 本人首先建立了“高等分析”课程的框架并主讲该课程。若干年后,本人的学生姜健飞成为“高等分析”及后更名为“现代应用数学方法”课程的主讲教师,他已进行了20年的教学实践。我们感到由于工科学生在大学本科阶段未曾受到“数学分析”等数学专业课程的严格训练,要掌握目前大多数“应用泛函分析”教材所提供的内容有一定的困难,于是针对工科研究生的实际情况编写了“高等分析”及“应用泛函分析方法”讲义,并在教学实践过程中进行了多次修改,使教学的内容更易为学生理解和掌握。经过这些年的教学实践,这本讲义已日益完善。 这次由姜健飞执笔的“现代应用数学方法”教材是在这些讲义的基础上充实完成的,它具有以下五方面特色: 1. 对泛函分析的基本概念作出了精炼化的讨论; 2. 将泛函分析的一些基本方法浓缩到了各个应用分支之中; 3. 由泛函分析方法讨论矩阵的Jordan标准形理论与常微分方程组理论; 4. 通过算子导数解决各类泛函极值(变分)问题; 5. 实变函数中的Lebesgue积分概念成为泛函分析空间完备化理论的重要应用。 这些特色赋予了泛函分析这一现代数学方法在应用中的新的活力,其理论上的精炼性及应用上的有效性是国内外同类教材中不多见的。现代应用数学方法序言本教材在各章后都配有一定数量的习题,它们一方面是主讲内容的完善,另一方面也是为了使读者适时得到数学修养上的训练。这将是一本适合于工科各个专业研究生学习现代应用数学方法的好教材,对应用数学专业高年级本科生及有关专业的高校教师与工程技术人员也是一本有价值的参考书。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值