实变函数(4)--Lebesgue积分

1.非负简单函数的积分

1.对于可测集 E ⊂ R n E\subset R^n ERn上的非负简单函数 φ \varphi φ,若其标准表达式为 φ ( x ) = ∑ i = 1 k c i χ E i ( x ) , ( x ∈ E = ⋃ i = 1 k E i ) \varphi(x)=\sum_{i=1}^{k}c_i\chi_{E_i}(x),(x\in E = \bigcup_{i=1}^{k}E_i) φ(x)=i=1kciχEi(x),(xE=i=1kEi)
其中 C i C_i Ci为非负实数, E i E_i Ei为可测集,当 i ≠ j i\neq j i̸=j时有 E i ∩ E j = ∅ E_i\cap E_j=\emptyset EiEj=,称广义实数 ∑ i = 1 k c i m E i \sum_{i=1}^{k}c_i mE_i i=1kcimEi(注意 m E i = ∞ mE_i=\infty mEi=时,适用关于 ∞ \infty 的运算约定)为 φ \varphi φ E E E上的Lebesgue积分,记为 ( L ) ∫ E φ ( x ) d x (L)\int_E\varphi(x)dx (L)Eφ(x)dx.

2.非负简单函数积分的性质

1. 0 ≤ ∫ E φ ( x ) d x ≤ ∞ 0\leq\int_E\varphi(x)dx\leq \infty 0Eφ(x)dx.
2. ∫ E c φ ( x ) d x = c ∫ E φ ( x ) d x ( c 为 非 负 实 数 ) \int_Ec\varphi(x)dx=c\int_{E}\varphi(x)dx(c为非负实数) Ecφ(x)dx=cEφ(x)dx(c).
3. ∫ E ( φ ( x ) + ψ ( x ) ) d x = ∫ E φ ( x ) d x + ∫ E ψ ( x ) d x \int_E (\varphi(x)+\psi(x))dx=\int_{E}\varphi(x)dx+\int_{E}\psi(x)dx E(φ(x)+ψ(x))dx=Eφ(x)dx+Eψ(x)dx.
4.若 E = A ∪ B , A ∩ B = ∅ , A , B ∈ M E=A\cup B,A\cap B=\emptyset,A,B\in M E=AB,AB=,A,BM ,则 ∫ E φ ( x ) d x = ∫ A φ ( x ) d x + ∫ B φ ( x ) d x \int_{E}\varphi(x)dx=\int_{A}\varphi(x)dx+\int_{B}\varphi(x)dx Eφ(x)dx=Aφ(x)dx+Bφ(x)dx
5.若 φ ( x ) ≤ ψ ( x ) ( x ∈ E ) \varphi(x)\leq \psi(x)(x \in E) φ(x)ψ(x)(xE),则 ∫ E φ ( x ) d x ≤ ∫ E ψ ( x ) d x \int_E\varphi(x)dx\leq\int_{E}\psi(x)dx Eφ(x)dxEψ(x)dx.

3.非负可测函数的积分

1.设 f f f是可测集 E ⊂ R n E\subset R^n ERn上的非负可测函数,{ φ k \varphi_k φk}是收敛于 f f f的非负简单函数的(对 k k k的)递增列,即每个 φ k \varphi_k φk E E E上的简单函数,且 0 ≤ φ 1 ( x ) ≤ φ 2 ( x ) ≤ . . . ≤ φ k ( x ) ≤ φ k + 1 ( x ) ≤ . . . ( ≤ f ( x ) ) , 0\leq \varphi_1(x)\leq\varphi_2(x)\leq...\leq\varphi_k(x)\leq\varphi_{k+1}(x)\leq...(\leq f(x)), 0φ1(x)φ2(x)...φk(x)φk+1(x)...(f(x)), lim ⁡ k → ∞ φ k ( x ) = f ( x ) , ( x ∈ E ) , \lim_{k \to \infty}\varphi_k(x)=f(x),(x\in E), klimφk(x)=f(x),(xE),则称极限 lim ⁡ k → ∞ ∫ E f ( x ) d x \lim_{k \to \infty }\int_Ef(x)dx klimEf(x)dx(有限实数或 + ∞ +\infty +)为函数 f f f E E E上的Lebesgue积分,记为 ∫ E f ( x ) d x \int_Ef(x)dx Ef(x)dx(或在积分号前加 ( L ) (L) (L)).
2.设 φ \varphi φ和所有 ψ k ( k = 1 , 2 , . . . . ) \psi_k(k=1,2,....) ψk(k=1,2,....)都是可测集 E ⊂ R n E\subset R^n ERn上的非负简单函数,并且当 x ∈ E x\in E xE时, ψ k ( x ) ≤ ψ k + 1 ( k = 1 , 2 , . . . ) , \psi_k(x)\leq\psi_{k+1}(k=1,2,...), ψk(x)ψk+1(k=1,2,...), φ ( x ) ≤ lim ⁡ k → ∞ ψ k ( x ) , \varphi(x)\leq\lim_{k \to \infty}\psi_k(x), φ(x)klimψk(x),则有 ∫ E φ ( x ) d x ≤ lim ⁡ k → ∞ ∫ E ψ k ( x ) d x \int_E\varphi (x)dx\leq\lim_{k \to \infty}\int_E\psi_k(x)dx Eφ(x)dxklimEψk(x)dx

4.非负可测函数积分的性质

1. 0 ≤ ∫ E f ( x ) d x ≤ ∞ 0\leq\int_Ef(x)dx\leq \infty 0Ef(x)dx.
2. ∫ E c f ( x ) d x = c ∫ E f ( x ) d x ( c 为 非 负 实 数 ) \int_Ecf(x)dx=c\int_{E}f(x)dx(c为非负实数) Ecf(x)dx=cEf(x)dx(c).
3. ∫ E ( f ( x ) + g ( x ) ) d x = ∫ E f ( x ) d x + ∫ E g ( x ) d x \int_E (f(x)+g(x))dx=\int_{E}f(x)dx+\int_{E}g(x)dx E(f(x)+g(x))dx=Ef(x)dx+Eg(x)dx.
4.若 E = E 1 ∪ E 2 , E 1 ∩ E 2 = ∅ , E 1 , E 2 可 测 E=E_1\cup E_2,E_1\cap E_2=\emptyset,E_1,E_2可测 E=E1E2,E1E2=,E1,E2 ,则 ∫ E f ( x ) d x = ∫ E 1 f ( x ) d x + ∫ E 2 f ( x ) d x \int_{E}f(x)dx=\int_{E_1}f(x)dx+\int_{E_2}f(x)dx Ef(x)dx=E1f(x)dx+E2f(x)dx
5.若 0 ≤ f ( x ) ≤ g ( x ) ( x ∈ E ) 0\leq f(x)\leq g(x)(x \in E) 0f(x)g(x)(xE),则 ∫ E f ( x ) d x ≤ ∫ E g ( x ) d x \int_Ef(x)dx\leq\int_{E}g(x)dx Ef(x)dxEg(x)dx.

5.切比雪夫不等式

1.若 0 ≤ A ≤ f ( x ) ≤ B , ( x ∈ E , A , B 为 常 数 ) 0\leq A\leq f(x)\leq B,(x\in E,A,B为常数) 0Af(x)B,(xE,A,B),则 A m E ≤ ∫ E f ( x ) ≤ B m E AmE\leq \int_{E}f(x)\leq BmE AmEEf(x)BmE
2.若 a a a为正的常数,则 m E ( f ≥ a ) ≤ 1 / a ∫ E f ( x ) d x mE(f\geq a)\leq1/a \int_Ef(x)dx mE(fa)1/aEf(x)dx此式通常称为切比雪夫不等式.

6. ∫ E f d x \int_E fdx Efdx=0的充分必要条件

1. ∫ E f ( x ) d x \int_E f(x)dx Ef(x)dx=0的充分必要条件是 f ( x ) f(x) f(x)在E上几乎处处等于0,即 f f f~0与 E E E.
2.若 ∫ E f ( x ) d x ≤ ∞ \int_E f(x)dx\leq \infty Ef(x)dx,则 f ( x ) f(x) f(x)在E上几乎处处有限.

7. f ∈ L ( E ) f\in L(E) fL(E)的充分必要条件

1.设 f ( x ) f(x) f(x)是在 E E E上几乎处处有限的非负可测函数, m ( E ) &lt; + ∞ m(E)&lt;+ \infty m(E)<+,对 [ 0 , + ∞ ) [0,+\infty) [0,+)作如下分法: 0 = y 0 &lt; y 1 &lt; y 2 &lt; . . . y k &lt; y k + 1 &lt; . . . , 0=y_0&lt;y_1&lt;y_2&lt;...y_k&lt;y_{k+1}&lt;..., 0=y0<y1<y2<...yk<yk+1<...,其中 y k + 1 − y k &lt; δ ( k = 0 , 1... ) y_{k+1}-y_k&lt;\delta(k=0,1...) yk+1yk<δ(k=0,1...).令 E k = { x ∈ E ∣ y k ≤ f ( x ) &lt; y k + 1 } , E_k=\lbrace x\in E |y_k\leq f(x)&lt;y_{k+1}\rbrace, Ek={xEykf(x)<yk+1}, f ∈ L ( E ) f\in L(E) fL(E)(积分值为有限)的充分必要条件是 ∑ k = 0 ∞ y k m ( E k ) &lt; + ∞ \sum_{k=0}^{\infty}y_km(E_k)&lt;+\infty k=0ykm(Ek)<+,并且 ∫ E f ( x ) d x = lim ⁡ δ → ∞ ∑ k = 0 ∞ y k m ( E k ) \int_{E}f(x)dx=\lim_{\delta \to \infty} \sum_{k=0}^{\infty}y_km(E_k) Ef(x)dx=δlimk=0ykm(Ek)

8.一般可测函数的积分

1.设 f f f是定义于 E ⊂ R n E\subset R^n ERn上的可测函数,若 f f f的正部 f + f^+ f+与负部 f − f^- f E E E上的积分不同时为 ∞ \infty ,则定义 f f f E E E上的Lebesgue积分为 ∫ E f ( x ) d x = ∫ E f + ( x ) d x − ∫ f − ( x ) d x . \int_{E}f(x)dx=\int_{E}f^+(x)dx-\int f^-(x)dx. Ef(x)dx=Ef+(x)dxf(x)dx.若这个积分取有限值(以后简称L可积或可积).在 E E E上可积函数全体(集合)记为 L ( E ) L(E) L(E),或简记为 L L L.

9.可测函数可积的充要条件

1.可测函数 f f f E ⊂ R n E\subset R^n ERn上可积的充分必要条件是,它的绝对值函数 ∣ f ∣ |f| f E E E上可积.

10.控制函数

1.设 f f f E ⊂ R n E\subset R^n ERn上可测,若存在非负函数 F ∈ L ( E ) F\in L(E) FL(E),使得 ∣ f ( x ) ∣ ≤ F ( x ) |f(x)|\leq F(x) f(x)F(x)(这时称 F F F f f f的控制函数),则 f ∈ L ( E ) f\in L(E) fL(E).

11.可测函数积分的性质

1.若 f ∈ L ( E ) f\in L(E) fL(E),则 ∣ f ( x ) ∣ &lt; ∞ a . e . 于 E . |f(x)|&lt;\infty a.e.于E. f(x)<a.e.E.
2.若 f f f是零测集 E E E上的任意广义实值函数,则 ∫ E f ( x ) d x = 0 \int_E f(x)dx=0 Ef(x)dx=0,从而 f ∈ L ( E ) f\in L(E) fL(E)
3.若 f f f g g g都是 E ⊂ R n E\subset R^n ERn上的可测函数,且 f f f~ g g g于E,则 f f f g g g在E上同时可积,或者同时不可积,并且在积时,他们的积分值相等.
4.若 f ∈ L ( E ) , g ∈ L ( E ) , a , b 是 常 数 f\in L(E),g\in L(E),a,b是常数 fL(E),gL(E),a,b,则 a f + b g ∈ L ( E ) af+bg\in L(E) af+bgL(E) ∫ E ( a f ( x ) + b g ( x ) ) d x = a ∫ E f ( x ) d x + b ∫ E g ( x ) x d x \int_{E}(af(x)+bg(x))dx=a\int_{E}f(x)dx+b\int_{E}g(x)xdx E(af(x)+bg(x))dx=aEf(x)dx+bEg(x)xdx
5.若有 f ∈ L ( E 1 ) , f ∈ L ( E 2 ) , 且 E 1 ∩ E 2 = ∅ , 则 f ∈ L ( E 1 ∪ E 2 ) f\in L(E_1),f\in L(E_2),且E_1\cap E_2=\emptyset,则f\in L(E_1\cup E_2) fL(E1),fL(E2),E1E2=,fL(E1E2) ∫ E 1 ∪ E 2 f ( x ) d x = ∫ E 1 f ( x ) d x + ∫ E 2 f ( x ) d x \int_{E_1\cup E_2}f(x)dx=\int_{E_1}f(x)dx+\int_{E_2}f(x)dx E1E2f(x)dx=E1f(x)dx+E2f(x)dx
6. f ∈ L ( E ) , E 0 ⊂ E , E 0 f\in L(E),E_0\subset E,E_0 fL(E),E0E,E0可测,则 f ∈ L ( E 0 ) f\in L(E_0) fL(E0) ∫ E \ E 0 f ( x ) d x = ∫ E f ( x ) d x − ∫ E 0 f ( x ) d x \int_{E \backslash E_0}f(x)dx=\int_{E}f(x)dx-\int_{E_0}f(x)dx E\E0f(x)dx=Ef(x)dxE0f(x)dx
7.设 f ∈ L ( E ) , g ∈ L ( E ) f\in L(E),g\in L(E) fL(E),gL(E).若 f ( x ) ≤ g ( x ) f(x)\leq g(x) f(x)g(x)a.e.于 E E E,则 ∫ E f ( x ) d x ≤ ∫ E g ( x ) d x \int_Ef(x)dx\leq \int_Eg(x)dx Ef(x)dxEg(x)dx
8.若 f ∈ L ( E ) f\in L(E) fL(E),则 ∣ ∫ E f ( x ) d x ∣ ≤ ∫ E ∣ f ( x ) ∣ d x |\int_Ef(x)dx|\leq \int_E|f(x)|dx Ef(x)dxEf(x)dx

12.积分的绝对连续性

f ∈ L ( E ) f\in L(E) fL(E),则对任意的 ε &gt; 0 \varepsilon&gt;0 ε>0,存在 δ &gt; 0 \delta&gt;0 δ>0,使得对 E E E的任意可测子集 E 0 E_0 E0,只要满足 m E 0 &lt; δ mE_0&lt;\delta mE0<δ,就有 ∫ E 0 ∣ f ( x ) ∣ d x &lt; ε \int_{E0}|f(x)|dx&lt;\varepsilon E0f(x)dx<ε.

13.列维(Levi)定理(单调收敛定理)

设{ f k f_k fk}是E上的非负可测函数的递增列,记 f ( x ) = lim ⁡ k → ∞ f k ( x ) ( x ∈ E ) , f(x)=\lim_{k\to \infty}f_k(x)(x\in E), f(x)=klimfk(x)(xE), ∫ E f ( x ) d x = lim ⁡ k → ∞ ∫ E f k ( x ) d x . \int_Ef(x)dx=\lim_{k \to \infty}\int_Ef_k(x)dx. Ef(x)dx=klimEfk(x)dx.

14.Lebesgue逐项积分定理

设{ f k f_k fk}是E上的非负可测函数列.令 f ( x ) = ∑ k = 1 ∞ f k ( x ) ( x ∈ E ) , f(x)=\sum_{k=1}^{\infty}f_k(x)(x\in E), f(x)=k=1fk(x)(xE), ∑ k = 1 ∞ f k ( x ) d x \sum_{k=1}^{\infty}f_k(x)dx k=1fk(x)dx逐项可积分,即 ∫ E f ( x ) d x = ∫ E ∑ k = 1 ∞ f k ( x ) d x . \int_Ef(x)dx=\int_E \sum_{k=1}^{\infty}f_k(x)dx. Ef(x)dx=Ek=1fk(x)dx.

15.法图(Fatou)引理

设{ f k f_k fk}是E上的非负可测函数列,则…
在这里插入图片描述

16.Lebesgue控制收敛定理

设{ f k f_k fk}是 E ∈ R n E\in R^n ERn上几乎处处收敛的可测函数列, lim ⁡ k → ∞ f k ( x ) = f ( x ) . \lim_{k \to \infty}f_k(x)=f(x). limkfk(x)=f(x).若存在非负函数 F F F,使得 F ∈ L ( F ) F\in L(F) FL(F)并且 ∣ f k ( x ) ∣ ≤ F ( x ) ( x ∈ E , k = 1 , 2... ) |f_k(x)|\leq F(x) (x\in E,k=1,2...) fk(x)F(x)(xE,k=1,2...),则函数 f f f及所有的 f k f_k fk都在E上可积,且 lim ⁡ k → ∞ f k ( x ) d x 存 在 并 等 于 ∫ E f ( x ) d x . \lim_{k\to \infty}f_k(x)dx存在并等于\int_Ef(x)dx. klimfk(x)dxEf(x)dx.

17.有界收敛定理

m E &lt; ∞ mE&lt;\infty mE<,{ f k f_k fk}是在 E E E上几乎处处收敛的可测函数列, lim ⁡ k → ∞ f k ( x ) = f ( x ) ( a . e . x ∈ E ) , \lim_{k\to \infty}f_k(x)=f(x)(a.e. x\in E), klimfk(x)=f(x)(a.e.xE),并且存在着常数 M &gt; 0 M&gt;0 M>0,使得 ∣ f k ( x ) &lt; M ∣ ( x ∈ E , k = 1 , 2 , . . . . ) , |f_k(x)&lt;M|(x\in E,k=1,2,....), fk(x)<M(xE,k=1,2,....), lim ⁡ k → ∞ ∫ E f k ( x ) d x = ∫ E f ( x ) d x . \lim_{k \to \infty}\int_Ef_k(x)dx=\int_Ef(x)dx. klimEfk(x)dx=Ef(x)dx.

18.勒贝格积分与黎曼积分的比较

1.若函数 f f f [ a , b ] [a,b] [a,b] ( R ) (R) (R)可积,则 f ∈ L ( a , b ) , 并 且 f \in L(a,b),并且 fL(a,b),, ( R ) ∫ a b f ( x ) d x = ( L ) ∫ a b f ( x ) d x . (R)\int_{a}^{b}f(x)dx=(L)\int_a^b f(x)dx. (R)abf(x)dx=(L)abf(x)dx.
2.设函数 f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b]有界,则f在 [ a , b ] [a,b] [a,b] R i e m a n n Riemann Riemann可积的充分必要条件是, f f f [ a , b ] [a,b] [a,b]上的间断点组成零测集.
3.若定义在 R R R上的函数 f f f在任何有限区间上有界,且它在 ( − ∞ , + ∞ ) (-\infty,+\infty) (,+)上的反常 R i e m a n n Riemann Riemann积分绝对收敛(蕴含 f f f在任何有限区间 R R R可积),则 f ∈ L ( − ∞ , + ∞ ) f\in L(-\infty,+\infty) fL(,+)并且 ( L ) ∫ − ∞ + ∞ f ( x ) d x = ( R ) ∫ − ∞ + ∞ f ( x ) d x (L)\int_{-\infty}^{+\infty}f(x)dx=(R)\int_{-\infty}^{+\infty}f(x)dx (L)+f(x)dx=(R)+f(x)dx

  • 5
    点赞
  • 29
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值