Lebesgue可积(Lebesgue integrable)是实分析和测度论中的一个概念,由法国数学家Henri Lebesgue在20世纪初提出。Lebesgue积分是Riemann积分的推广,它允许对更广泛的函数类进行积分,包括一些Riemann不可积的函数。
Lebesgue积分的基本概念:
-
测度(Measure):在Lebesgue积分理论中,首先需要定义一个测度,它是一个函数,用于给实数线上的子集分配一个非负实数或无穷大,这个数可以被解释为该子集的“大小”或“体积”。
-
可测函数(Measurable Function):如果一个函数的每个可测集合的原像是可测的,那么这个函数就是可测的。
-
简单函数(Simple Function):一个只取有限个值的可测函数称为简单函数。
-
Lebesgue积分:对于非负可测函数,Lebesgue积分定义为简单函数积分的极限。对于一般的可测函数,其积分可以分解为正部分和负部分的积分。
Lebesgue可积的条件:
一个函数( f )在测度空间 ( E , M , μ ) (E, \mathcal{M}, \mu) (E,M,μ)上是Lebesgue可积的,如果它是一个可测函数,并且它的绝对值的积分是有限的,即:
∫ E ∣ f ∣ d μ < ∞ \int_E |f| \, d\mu < \infty ∫E∣f∣dμ<∞
这里, E E E是定义域, M \mathcal{M} M是 E E E上的 σ − σ- σ−代数, μ \mu μ是测度。
Lebesgue积分的性质:
- 线性:如果 f f f和 g g g是 L e b e s g u e Lebesgue Lebesgue可积的,那么对于任意的常数 a a a和 b b b, a f + b g af + bg af+bg也是 L e b e s g u e Lebesgue Lebesgue可积的,并且:
∫ ( a f + b g ) d μ = a ∫ f d μ + b ∫ g d μ \int (af + bg) \, d\mu = a\int f \, d\mu + b\int g \, d\mu ∫(af+bg)dμ=a∫fdμ+b∫gdμ
-
单调性:如果 f f f和 g g g是可测函数,并且对于所有 x ∈ E x \in E x∈E,有 f ( x ) ≤ g ( x ) f(x) \leq g(x) f(x)≤g(x),那么:
∫ f d μ ≤ ∫ g d μ \int f \, d\mu \leq \int g \, d\mu ∫fdμ≤∫gdμ
-
控制收敛定理:如果一系列可测函数 { f n } \{f_n\} {fn}逐点收敛到函数 f f f,并且存在一个可积函数 g g g使得对于所有的 n n n和所有的 x x x,有 ∣ f n ( x ) ∣ ≤ g ( x ) |f_n(x)| \leq g(x) ∣fn(x)∣≤g(x),那么 f f f是可积的,并且:
lim n → ∞ ∫ f n d μ = ∫ f d μ \lim_{n \to \infty} \int f_n \, d\mu = \int f \, d\mu limn→∞∫fndμ=∫fdμ
Lebesgue积分是现代分析学的基础之一,它在概率论、傅里叶分析、泛函分析等领域有着广泛的应用。