Lebesgue可积

Lebesgue可积(Lebesgue integrable)是实分析和测度论中的一个概念,由法国数学家Henri Lebesgue在20世纪初提出。Lebesgue积分是Riemann积分的推广,它允许对更广泛的函数类进行积分,包括一些Riemann不可积的函数。

Lebesgue积分的基本概念:

  1. 测度(Measure):在Lebesgue积分理论中,首先需要定义一个测度,它是一个函数,用于给实数线上的子集分配一个非负实数或无穷大,这个数可以被解释为该子集的“大小”或“体积”。

  2. 可测函数(Measurable Function):如果一个函数的每个可测集合的原像是可测的,那么这个函数就是可测的。

  3. 简单函数(Simple Function):一个只取有限个值的可测函数称为简单函数。

  4. Lebesgue积分:对于非负可测函数,Lebesgue积分定义为简单函数积分的极限。对于一般的可测函数,其积分可以分解为正部分和负部分的积分。

Lebesgue可积的条件:

一个函数( f )在测度空间 ( E , M , μ ) (E, \mathcal{M}, \mu) (E,M,μ)上是Lebesgue可积的,如果它是一个可测函数,并且它的绝对值的积分是有限的,即:

∫ E ∣ f ∣   d μ < ∞ \int_E |f| \, d\mu < \infty Efdμ<

这里, E E E是定义域, M \mathcal{M} M E E E上的 σ − σ- σ代数, μ \mu μ是测度。

Lebesgue积分的性质:

  1. 线性:如果 f f f g g g L e b e s g u e Lebesgue Lebesgue可积的,那么对于任意的常数 a a a b b b a f + b g af + bg af+bg也是 L e b e s g u e Lebesgue Lebesgue可积的,并且:

∫ ( a f + b g )   d μ = a ∫ f   d μ + b ∫ g   d μ \int (af + bg) \, d\mu = a\int f \, d\mu + b\int g \, d\mu (af+bg)dμ=afdμ+bgdμ

  1. 单调性:如果 f f f g g g是可测函数,并且对于所有 x ∈ E x \in E xE,有 f ( x ) ≤ g ( x ) f(x) \leq g(x) f(x)g(x),那么:

    ∫ f   d μ ≤ ∫ g   d μ \int f \, d\mu \leq \int g \, d\mu fdμgdμ

  2. 控制收敛定理:如果一系列可测函数 { f n } \{f_n\} {fn}逐点收敛到函数 f f f,并且存在一个可积函数 g g g使得对于所有的 n n n和所有的 x x x,有 ∣ f n ( x ) ∣ ≤ g ( x ) |f_n(x)| \leq g(x) fn(x)g(x),那么 f f f是可积的,并且:

lim ⁡ n → ∞ ∫ f n   d μ = ∫ f   d μ \lim_{n \to \infty} \int f_n \, d\mu = \int f \, d\mu limnfndμ=fdμ

Lebesgue积分是现代分析学的基础之一,它在概率论、傅里叶分析、泛函分析等领域有着广泛的应用。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

是数学系的小孩儿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值